Chapter 8

Land and Soils

8.1 Introduction

This chapter describes the natural characteristics of the site of the proposed development and its immediate surroundings in terms of soils and geology. This chapter also assesses the likely significant impacts of the construction and operation of the proposed development on these resources and where required, mitigation measures are proposed to avoid, reduce or minimise the impact on soils and geology due to the proposed development.

The existing ground conditions are outlined in this chapter, with the predicted impacts assessed on the basis of the relevant construction methodology and particular ground characteristics.

The mitigation measures and the residual impacts are provided in Sections 8.5 and 8.6 of this chapter respectively.

In addition to the cable car and the visitor centre, the proposed development also includes upgrades to the approach road, the R572, from the junction with the R575 to the mainland side cable car. These road improvement work will include the construction of 10 no. passing bays and 1 no. visibility splay at Bealbarnish gap and completion of a number of local improvements to improve visibility. A full description of the proposed development is detailed in Chapter 4 of this EIAR.

8.2 Methodology

This chapter is prepared having regard to the Environmental Impact Assessment (EIA) Directive 2014/52/EU and the following guidance documents:

- Environmental Protection Agency (EPA 2017) Draft Guidelines on the Information to be contained in Environmental Impact Assessment Reports;
- Environmental Protection Agency (EPA 2015) Draft Advice Notes for Preparing Environmental Impact Statements;
- Advice notes on Current Practice in the Preparation of Environmental Impact Statements, published by the Environmental Protection Agency (EPA) (2003);
- Guidelines on the information to be contained in environmental impact statements, published by the EPA (2002);
- National Roads Authority (NRA 2008) Guidelines on Procedures for Assessment and Treatment of Geology, Hydrology and Hydrogeology for National Road Schemes; and
- Institute of Geologists of Ireland (IGI) (2013) Guidelines for the Preparation of Soils, Geology and Hydrogeology Chapters of Environmental Impact Statements.

8.2.1 Summary of Available Information

Walkover surveys

ROD's chartered civil engineers have surveyed the area of the proposed development on several occasions throughout 2018 and 2019. Observations were made and ample photographic evidence was taken during these site visits.

Mapping and Aerial Photography

Geological mapping from the Geological Survey of Ireland, covering the subsoils and solid geology of the location of the proposed development was reviewed. Digital mapping, available at <u>www.gsi.ie/mapping</u>, also shows the quaternary geology along with aquifer vulnerability, known groundwater wells and existing ground investigation information.

Open source (Google Earth, Bing Maps) and Ordnance Survey Ireland (OSI) aerial photography was analysed in order to identify large scale ground characteristics.

Ground Investigations

Ground investigation works specific to this project were tendered by Cork County Council and were carried out by Priority Geotechnical Limited between the 4th and 18th of April 2019. The ground investigation consisted of:

- Mainland: three rotary core boreholes including one for trial well, two trial pits and slit trenches, three pavement cores and four geophysical profiles; and
- Island side: three rotary core boreholes including one for trial well, two slit trenches and two pavement cores.

Pumping tests, falling head permeability tests and percolation tests were carried out in the boreholes. Samples taken from the rock cores were analysed in a laboratory in order to determine the geotechnical parameters and contamination/aggressivity levels. The findings from the laboratory analyses were reported in a Factual Report.

Contaminated Land

The development area is largely greenfield, with the exception of the existing station footprint and the access road and parking area. A sample for environmental ground contamination testing was taken next to the existing station. No noticeable signs of contamination were noted by the specialised contractor during sampling. Laboratory testing confirmed that there is no ground contamination present, and that the soil material is non-hazardous and inert.

8.3 Receiving Environment

The description of existing conditions is based on desk study information, site walkovers, mapping and ground investigations undertaken in the development area.

Topography

On the mainland, the topography of the area rises steeply from the coastline with minor cliffs up to 7m height, after which it turns onto a gentler slope of approximately 20°. The topography steepens up again approximately 300m behind the coastline as it approaches the local hill. The island side follows the similar outline, with locally higher cliffs. The surface is typically uneven with many smaller rock outcrops scattered across the area.

Bedrock Geology

GSI 1:100,000 Bedrock Geology mapping indicates that the entire area (mainland and Dursey island) is underlain by the Caha Mountain Formation, comprised of purple and green sandstones and siltstones. The bedrock geology is presented in Figure 8.1 of Volume 3 of this EIAR. The quaternary sediment map shows the bedrock to outcrop and subcrop in the wider area, which was confirmed during the walkover survey where

only a very thin layer of topsoil and some weathered colluvium (up to 1.0m thick) was found to overlie the bedrock.

A geological fault with northwest-southeast direction is shown in GSI 1:100,00 Bedrock Geology map, passing in the immediate vicinity of the proposed locations on both mainland and Dursey Island.

The photographic evidence of outcrops of limited size and the borehole logs suggest that the rock is very thinly bedded to laminated, with bedding planes nearly vertical and the orientation of the bedding planes towards northwest-southeast. The discontinuities in the predominant discontinuity set (bedding) are generally undulated to stepped, rough, closed, slightly weathered and very closely spaced. Borehole logs indicate medium strong to very strong grey to purple siltstone with minimal non-intact zones and very little weathering. Unconfined strength of the rock from the laboratory testing was typically 10 to 30 MPa, with several samples exceeding 100 MPa. Groundwater level was observed approximately 1m below ground level.

Soils and Subsoils

Subsoil depths across the site are typically low (up to 1.0m) with bedrock being exposed throughout the development area. Bedrock outcrop is recorded in the GSI Quaternary and Teagasc subsoil mapping, as presented in Figure 8.2 of Volume 3 of this EIAR. The "Rock – Bedrock at surface" in GSI classification and "Shallow rocky Peaty/Non-peatymineral Complexes" in Teagasc classification is the recorded subsoil classifications present across the site. The site walkover and ground investigation show that the overburden is typically composed of very thin peaty topsoil and gravelly/cobbly colluvium overlying shallow bedrock.

Geologic heritage and geohazards

There are no Geologic Heritage features, quarries or commercial mineral deposits within the boundaries of the site or impacted by the proposed development.

No historical landslides are recorded within or in the vicinity of the site extent. This is anticipated, as the ground cover is rock outcrop and the slope angle is too mild to enable the detachment and sliding of rock blocks. The national Landslide Susceptibility Map shows the area to fall within the moderately low to moderately high landslide susceptibility area. The Landslide Susceptibility Map is developed primarily for landslides in mineral soils and peat and is known to overpredict the susceptibility category in rock slopes.

8.4 **Predicted Impacts**

All structural elements will be founded on pad foundations placed onto the fresh unweathered bedrock. Loading, stresses and deformations applied to the bedrock will be well within the capacity of the rock mass and tolerance of structural elements. Negligible settlements are expected due to the high stiffness of the rock. Foundation of the structural elements will, therefore, have a negligible impact on the existing rock conditions.

Approximately 6,500m³ of overburden and bedrock will be excavated from the foundation footprint and from a part of the parking area on the mainland side. The rock will be reused on-site as fill to structures as described in the mitigation measures.

There are no predicted impacts in the operation phase.

8.5 Mitigation Measures and Monitoring

In general, the temporary and permanent impacts on land and soils are considered minimal and will be managed by the following best practice control measures.

The bedrock excavated on site will be reused as fill to structures, below the structures' floor slab where the slab is above the existing ground level, and to level the parking area. The laboratory tests carried out on rock samples confirm that the rock won on site can be used for structures' fill purposes in accordance to Specifications for Road Works. The majority of the excavated bedrock will be reused on site and there will be very limited and/or no need for off-site disposal. The design also ensures that the cut and the fill requirements are balanced, so that only small volumes of imported fill will be required.

Stripped topsoil will be temporarily stored and reused throughout the development area, for instance over the currently paved area next to the existing station.

A geotextile screen and boom with oil barrier will be required around the perimeter of the construction works to prevent the runoff of silt, oil or other deposits generated by construction activities.

8.6 Residual Impacts

There are no residual impacts on land and soils as a result of this proposed development.

8.7 Conclusions

The development area is situated in the geological context of outcropping sandstones and siltstones of Caha formation. A detailed project-specific ground investigation campaign has been planned and undertaken, with the results of satisfactory density and quality for the project requirements. The bedrock is proven to be medium strong to very strong and suitable as a structural foundation medium. No impacts are thus expected from the construction to the land and soils. Furthermore, the excavated rock will be able to be reused on site as fill to structures. No ground contamination was encountered. Potential impacts to land and soils arising from the potential need to dispose of the surplus excavated material or importing large quantities of fill, were mitigated by design as an earthwork balance has been achieved, with only very minor quantities of soil for off-site disposal and/or importation. The best practice control measures for impact mitigation will be employed to ensure no residual impacts on land and soils.

8.8 References

Priority Geotechnics Ltd (2019). Dursey Cable Car Ground Investigation Draft Factual Report.

Environmental Protection Agency (EPA) (2017). Draft Guidelines on the Information to be contained in Environmental Impact Assessment Reports.

EPA (2015). Draft Advice Notes for Preparing Environmental Impact Statements.

EPA (2003). Advice notes on Current Practice in the Preparation of Environmental Impact Statements.

EPA (2002). Guidelines on the information to be contained in environmental impact statements.

TII (formerly NRA) (2008). Guidelines on Procedures for Assessment and Treatment of Geology, Hydrology and Hydrogeology for National Road Schemes

Institute of Geologists of Ireland (IGI) (2013). *Guidelines for the Preparation of Soils, Geology and Hydrogeology Chapters of Environmental Impact Statements.*

Appendix 8.1 Factual Report

Our Ref: JMS/Rp/P19033 (*.pdf)

24th June, 2019

Messrs. Roughan O'Donovan Arena House, Arena Road, Sandyford, Dublin 18.

Re: Dursey Island Cable Car & Visitor Centre Development, Co. Cork, Ground Investigation – Factual report.

Introduction

In February 2019, Priority Geotechnical were requested by Roughan O'Donovan on behalf of the client Cork County Council to undertake a ground investigation (GI) as part of the proposed Dursey Island Cable Car & Visitor Centre Development, Co. Cork.

The proposed GI works are located adjacent to the existing cableway which is also the site of the proposed Dursey Island Cableway and Visitor Centre Development, and is located at the southwestern tip of the Beara Peninsula (Lambs Head) in the west of County Cork. The cable car connects the mainland at Ballaghboy to a point on the eastern coast of Dursey Island over a narrow stretch of water known as the Dursey Sound.

Ground investigation works are required on both the mainland and on the island adjacent to the existing cableway infrastructure. A new support tower and a new station are proposed approximately 30m southeast from the existing towers and stations.

The investigation works required for the Dursey Island Cable Car and Visitor Centre Development will be undertaken at a number of locations on the mainland and island Including Greenfield lands, a combination of natural grasslands and agricultural pasture land with rock outcrops throughout. Some locations may require access via steeply sloping ground. Areas in the vicinity of the existing cable car mainland and island stations which are paved in bituminous surfacing.

Objectives

The project involves the gathering, manipulation and compilation of ground investigation data to enable the preliminary detailed planning and design of the proposed cableway and visitor centre.

Scope

The scope of the ground investigation, which was specified by Roughan O'Donovan, comprised of the following:

- Rotary boreholes;
- Trial pits;
- Slit trenches;
- In situ tests;
- Standpipe installations;
- All associated sampling;
- Laboratory testing and
- All associated reporting.

This report presents a summary of the factual records, data obtained with regard to the ground investigation for the proposed Dursey Island Cable Car and Visitor Centre Development. This report should be read in conjunction with the accompanying exploratory logs and laboratory test data.

Site Works

This investigation was carried out in accordance with the contract specification: Specification and Related Documents for Ground Investigation in Ireland (Engineers Ireland, October 2006), Eurocode 7- Geotechnical Design Part 2, ground investigation and testing (BS EN 1997-2: 2007) and the relevant British Standards (BS 5930 (1999) Code of Practice for Site Investigation +A2:2010 and BS 1377, Method of Tests for Soil for Civil Engineering Purposes, *in situ* Tests.

The investigation fieldworks were undertaken between the 05th April and the 14th April, 2019 under the supervision of PGL, Engineering Geologist(s). Details of the plant and equipment used are detailed on the relevant exploratory records, accompanying this factual report.

Metroscan Utility Locating (MUL) carried out a Ground Penetrating Radar (GPR) survey to locate underground services at the site of the existing station on the mainland. The findings are accompanying this factual report.

Rotary Boreholes

Six (6) rotary boreholes were advanced to depths 7.0m below existing ground level (bgl) to 25.5m bgl using PGL's Deltabase 520 rig and Symmetrex casing system. The exploratory records are attached, herein.

Location	Final Depth (m bgl)	Date Start (dd/mm/yyyy)
RC01	18.6	14/04/2019
RC02	16.15	10/04/2019
RC03	13.65	08/04/2019
RC04	7.0	09/04/2019
RCTW01	25.5	12/04/2019
RCTW02	25.5	05/04/2019

Trial Pits

Two (2) trial pit excavations were dug to depths 0.3m bgl to 1.0m bgl using an 8t tracked excavator. The exploratory records are attached, herein.

Location	Final Depth (m bgl)	Date Start (dd/mm/yyyy)
TP01	0.3	11/04/2019
TP02	1.0	12/04/2019

Slit Trenches

Four (4) slit trench excavations were dug to depths between 0.4m bgl and 1.3m bgl using a 3t tracked excavator. The exploratory records and associated cross sectional drawings are presented, herein.

Location	Final Depth (m bgl)	Date Start (dd/mm/yyyy)
ST01	1.3	11/04/2019
ST03	0.6	09/04/2019
ST04	0.6	09/04/2019
ST04A	0.4	09/04/2019

Sampling

Four (4) bulk disturbed samples (B), four (4) small disturbed samples (D), four (4) pavement cores and 51.0lin.m of rock core were taken from exploratory locations in general accordance with the preparation for and methods of taking samples, together with their size, preservation and handling was in accordance with British Standard BS 5930: 1981 - Code of Practice for Site investigation, the contract documents and the Association of Geotechnical and Geo-environmental Specialists (AGS) guide to environmental sampling, September 2010.

A single (1) environmental sample (ES) was taken at 0.25m bgl at location TP02. The sample was placed immediately in air-tight containers, which were filled to the top of the sample container. The sample suite consisted of: 2No. small disturbed samples (D) not less than 1.0kg, 2No. 250g amber glass sample containers and 2No. 60g amber glass sample containers. Additionally seven (07) environmental water samples were taken in litre glass and plastic bottles.

The preparation for and methods of taking environmental samples, together with their size, preservation and handling was in accordance with British Standard BS 5930: 1981-Code of Practice for Site investigation, the contract documents and the Association of Geotechnical and Geo-environmental Specialists (AGS) guide to environmental sampling, September 2010.

In-Situ Testing

Standard Penetration Test

Six (6) Standard Penetration Tests, N values, were carried out in the boreholes using the 60° solid cone in place of the standard split barrel sampler in accordance with Geotechnical Investigation and Testing, Part 3 Standard penetration test, BS EN ISO 22476-3:2005+A1:2011. Standard penetration tests were carried out in the rotary boreholes with values Nspt= >50.

Permeability Testing

In situ variable head (falling) permeability tests was carried out in rotary borehole RC01. *In-situ* permeability tests were carried out in accordance with BS5930: 1999, Section 4: CI. 25.4, within the superficial deposits over duration of one (1) hour. The processed test data is presented on the relevant borehole log presented herein of this factual report. The shape or intake factor, f was derived from the condition at the base of the borehole at the test depth and test geometry as per Hvorslev (1951).

$$k = \frac{A}{fd} \frac{\log_{e}(H_{o}/H_{i})}{t}$$

Generally for all tests the specific depth range of the test was the ground conditions below the casing. A mean k measured ($k_H = k_V$), permeability in the soil was assumed equal in both horizontal and vertical direction, ($k_H/k_V = 1$.). The test geometry provided a shape factor, f of 20 for the test undertaken.

Infiltration Pits

A single (1) infiltration test was carried out in general accordance with the BRE Digest 365, 2007 Soakaway Design Standards. A single (1) cycle of infiltration/ drainage was undertaken at a depth of 1.5m bgl. A summary of the testing is shown below and presented accompanying the relevant exploratory records attached, herein.

Percolation Tests

Percolation tests to assess the hydraulic assimilation capacity of the soils encountered were carried out using the P-test and T-test method. Three test holes per percolation test were dug. Tests were carried out in accordance with Section 6.3 of I.S CEN/TR 12566-2:2005. The results are accompanying this factual report.

Pump Tests

In situ pump tests were carried out in 125mm diameter standpipe wells at RCTW01 and RCTW02. Groundwater was monitored during pumping tests using Rugged Troll 100 level loggers. Continuous, absolute pressure (hydrostatic and barometric pressure) was measured *in situ* to determine continual groundwater levels. Levels were obtained prior to the pump test, during pumping and during the recharge phase. Accuracy was within 0.05% in water depths up to 30m. The data logs are presented as digital spreadsheet data (*.xls) accompanying this factual report.

Continuous monitoring of groundwater levels at the station well was undertaken using a Rugged Troll 100 data logger. The readings are presented as digital (.xls) files and accompany this factual report. Continuous monitoring was being undertaken at the time of reporting with results to be issued separately at a later date.

Test	Quantity	Comment
Standard penetration test	06Nr.	Nspt=>50
Soakaway Test	01Nr.	1.13x10 ⁻⁵
Falling Head Test	01Nr.	3.93x10 ⁻³
Percolation Tests	-	P-Tests and T-Tests. See attached results
Pump Tests	02Nr.	RCTW01 & RCTW02. See accompanying .xls files.

SUMMARY OF IN-SITU TESTS

Survey and Drawings

The 'as built' exploration locations were subsequently surveyed using Trimble 5700/5800 GPS equipment to the Ordinance Survey Irish Transverse Mercator system of coordinates (ITM) and elevations to Malin Head datum. The location layout (P19033_SI_A, P19033_SI_01 & P19033_SI_02) is attached.

Location	Easting	Northing	Ground Level (mOD)	Final Depth (m bgl)	Date Start (dd/mm/yyyy)
RC01	50809.84	41858.34	21.30	18.60	14/04/2019
RC02	50737.83	41854.34	13.70	16.15	10/04/2019
RC03	50543.98	41651.52	18.05	13.65	08/04/2019
RC04	50520.07	41619.36	20.90	7.00	09/04/2019
RCTW01	50777.83	41902.35	23.70	25.50	12/04/2019
RCTW02	50497.58	41564.08	23.27	25.50	05/04/2019
ST01	50811.84	41855.34	20.80	1.30	11/04/2019
ST03	50550.02	41648.35	17.47	0.60	09/04/2019
ST04	50523.15	41624.58	20.36	0.60	09/04/2019
ST04A	50528.73	41615.59	20.50	0.40	09/04/2019
TP01	50825.85	41875.34	25.30	1.00	11/04/2019
TP02	50792.84	41886.35	23.30	0.30	12/04/2019

Laboratory Testing

Laboratory testing was scheduled by PGL on behalf of Roughan O'Donovan and carried out by PGL. Specialist chemical testing was undertaken by Chemtest Ltd. (UK) on behalf of PGL in accordance with BS1377 (1990), Methods of test for soils for civil engineering purposes and the ISRM suggested methods for rock characterisation, testing and monitoring.

Please note that all samples shall be retained for a period no longer than 28 days from the date of this report. Thereafter all remaining samples shall be appropriately disposed of unless a written instruction to the contrary is received by PGL prior to the date of this reporting and within the 28 day period outlined above. Laboratory testing will result in a reduction of sample quantity and in some cased the use of the full sample mass. Samples already tested may not be suitable or available for further testing.

The laboratory data is attached and summarised as follows;

Туре		Remarks
Natural Moisture Content		12% to 22%
		Liquid Limit, LL 37% to 52%
Atterberg Limits		Plastic Limit, PL 37% to 52%
		Plasticity Index, PI 8 to 18
Particle Size Distribution	04	No hydrometer analysis on fine soils
рН	05	7.9 to 9.5

SUMMARY OF LABORATORY TESTING

Туре	Nr.	Remarks
Sulphate (water soluble as SO ₄₎	05	<0.010g/l
Sulphate (acid soluble)	05	0.010% to 0.021%
Organic matter	01	0.91
Magnesium (water soluble)	04	<0.010g/l
Total Sulphur	04	<0.010%
Environmental Water	07	See attached results
Environmental Soil	01	See attached results
Point load IS50	23	0.2MPa to 7.1MPa
Unconfined compressive strength (UCS	09	9.67MPa to 44.97MPa
Slake durability	04	See attached results
Los Angeles abrasion Value	04	See attached results
Magnesium sulphate soundness	04	See attached results

Published Geology

The geology of the study area (GSI 1:100,000 mapping Sheet 24) is characterised by the Caha Mountain Formation (CH), described as purple and green Sandstone and Siltstone. Outcropping bedrock is shown extensively in the study area. The national groundwater mapping indicates extreme vulnerability with rock at or near the surface.

Teagasc subsoil mapping indicates that the area is underlain by exposed bedrock and Glacial till deposits derived from Devonian Sandstones.

Ground Conditions

The full details of the ground conditions encountered are provided for on the exploratory records accompanying this report. The records provide descriptions, in accordance with BS 5930 (1999) +A2: 2010 and Eurocode 7, Geotechnical Investigation and Testing, Identification and classification of soils, Part 1, Identification and description (EN ISO 14688-1: 2002)– Identification and Classification of Soil, Part 2: Classification Principles (EN ISO 14688-2:2004) and Identification and Classification of Rock, Part 1: Identification & Description (EN ISO 14689-1:2004) of the materials encountered, *in situ* testing and details of the samples taken, together with any observations made during the site investigation.

Groundwater Conditions

Groundwater is recorded when encountered during boring over a period of 20 minutes, noting any changes that may occur.

Groundwater conditions observed in the excavations are those appertaining to the period of the investigation. Groundwater levels may be subject to diurnal, seasonal and climatic variations and can also be affected by drainage conditions or tidal variations etc.

Groundwater was encountered between 0.2m bgl and 9.0m bgl during the period of works. Four (4) 50mm diameter HDPE standpipes were installed as per the scope of works. The groundwater regime should be assessed from monitoring standpipes where available.

Location	Depth Top (m bgl)	Depth Base (m bgl)	Diameter (mm)	Pipe Type	
RC01	0.0	2.0	50	PLAIN	
KC01	2.0	10.5	50	SLOTTED	
RC03	0.0	1.65	50	PLAIN	
RC03	1.65	13.65	50	SLOTTED	
RCTW01	0.0	9.0	125	PLAIN	
	9.0	25.5	125	SLOTTED	
RCTW02	0.0	10.0	125	PLAIN	
KGTW02	10.0	20.5	125	SLOTTED	

SUMMARY OF STANDPIPE INSTALLATIONS

Exploratory locations were backfilled with gravel, bentonite and arisings.

•• GRAVEL Backfill to installation/ borehole

_____ uPVC slotted pipe

ARISINGS Backfill BENTONITE Backfill to installation/ Should you have any queries in relation to the data presented, please do not hesitate to contact our office.

Yours sincerely, For **Priority Geotechnical,**

eenee

James McSweeney BSc Engineering Geologist

No responsibility can be held by PGL for ground conditions between exploratory locations. The exploratory logs provide for ground profiles and configuration of strata relevant to the investigation depths achieved during the fieldworks. Caution shall be taken when extrapolating between such exploratory locations. No liability is accepted for ground conditions extraneous to the exploratory locations. Where additional information becomes available any assessment may be subject to review and change.

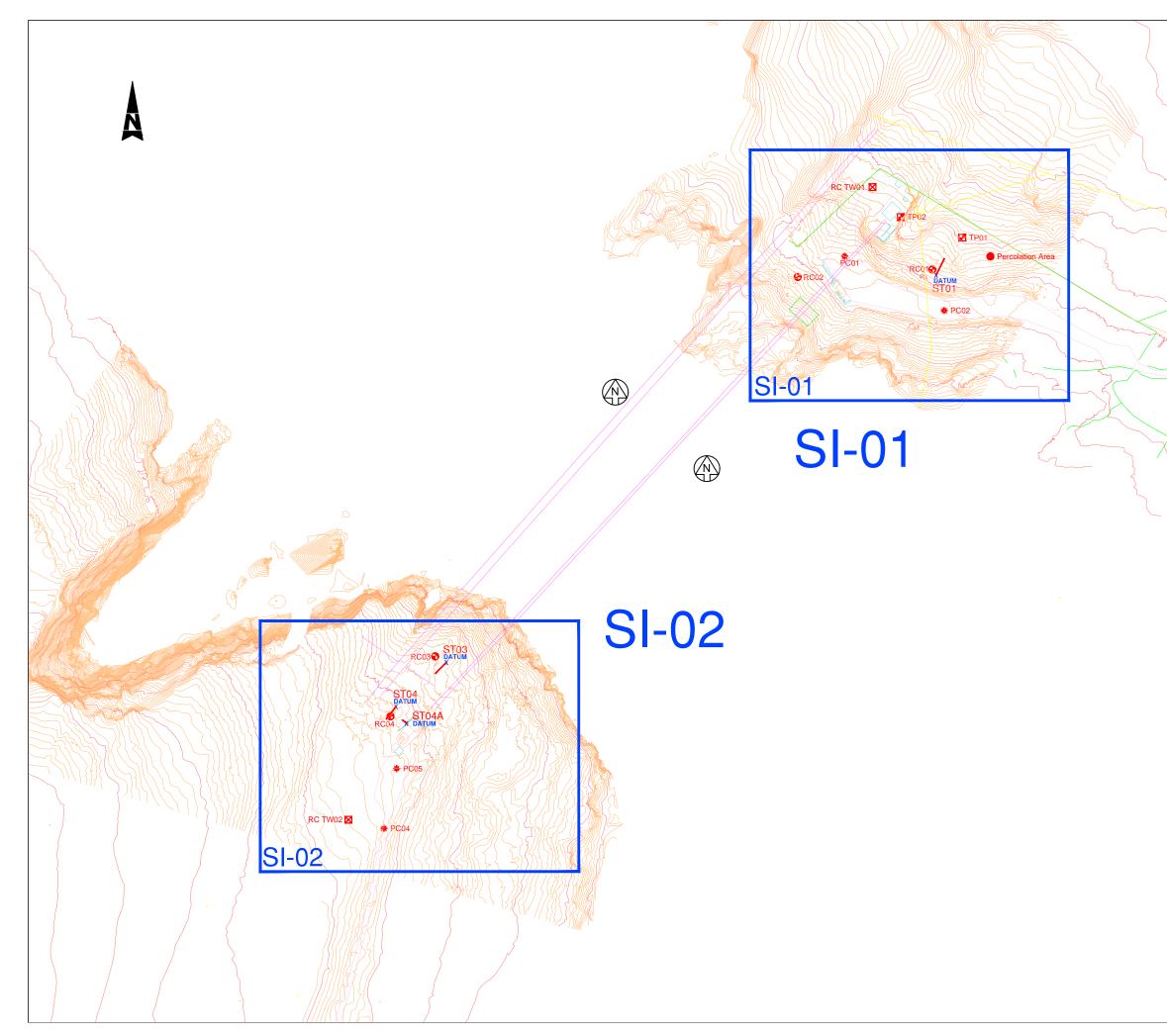
This report has been prepared for the employer Ireland and their Representative(s) as outline, herein. The information should not be used without their prior written permission. PGL accepts no responsibility or liability for this document being used other than for the purposes for which it was intended.

KEY TO SYMBOLS ON EXPLORATORY HOLE RECORDS

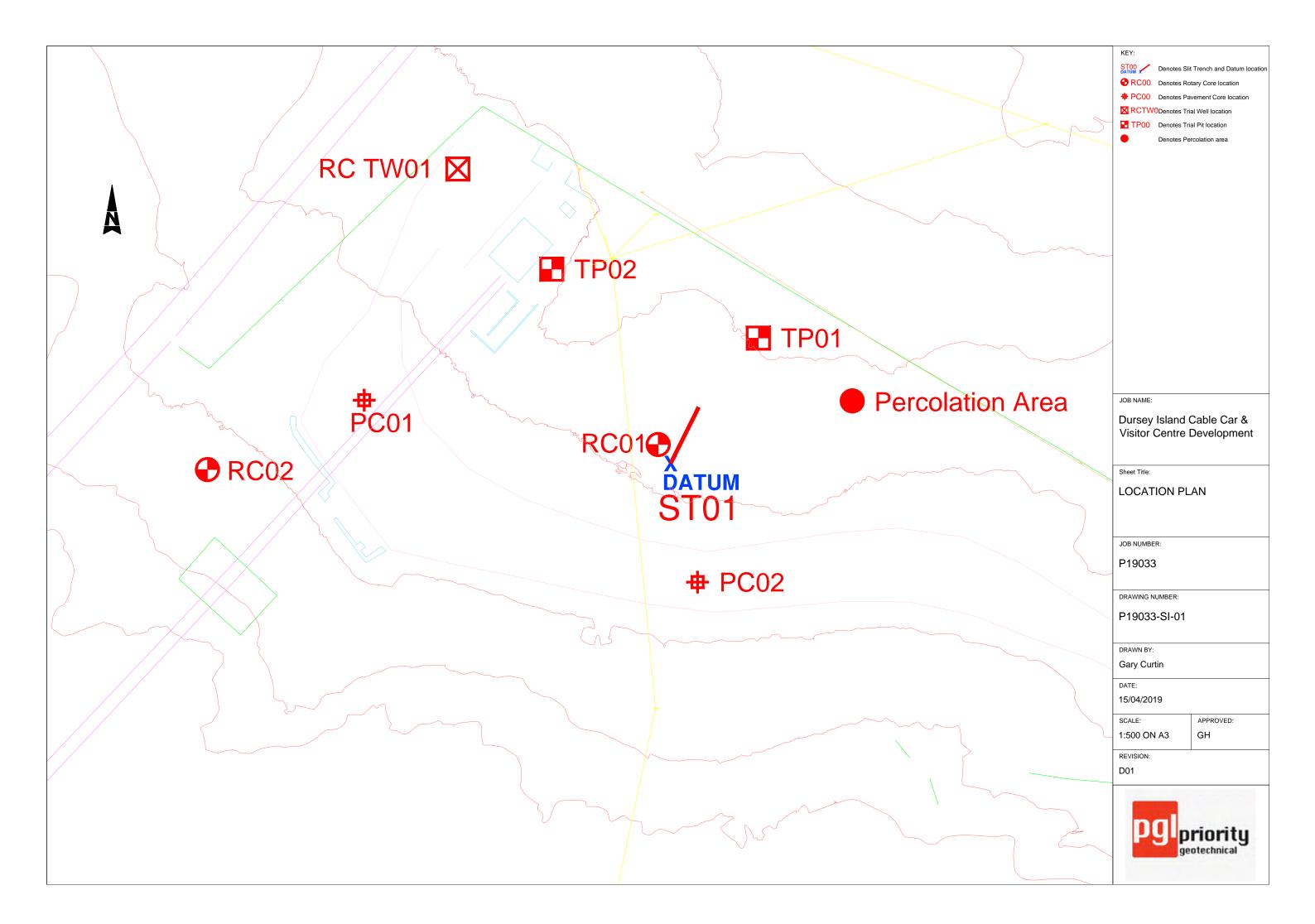
All linear dimensions are in metres or millimetres

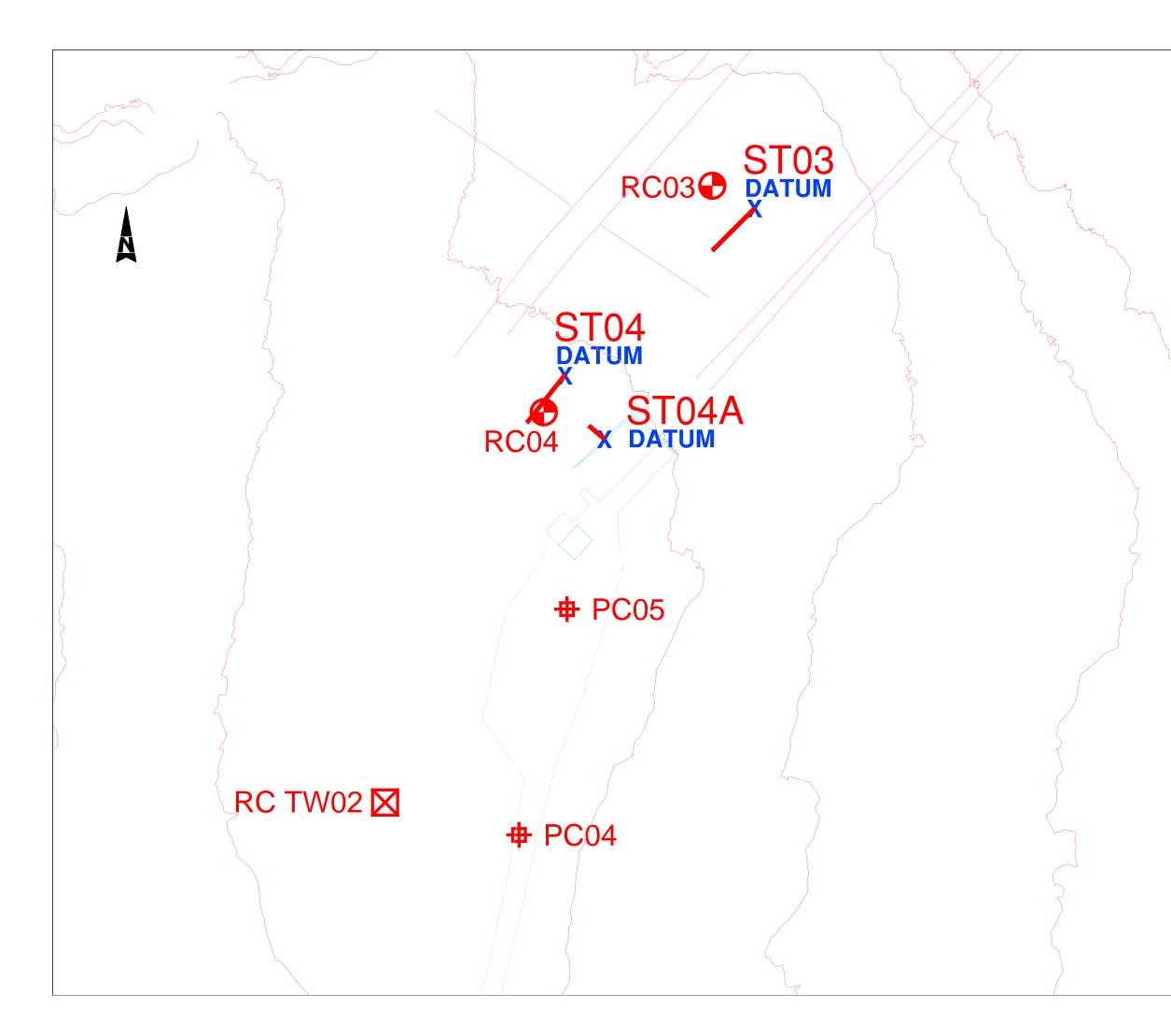
DESCRIPTIONS

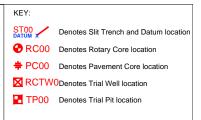
**	Drillers Description
Friable	Easily crumbled
SAMPLES	
U()	Undisturbed 102mm diameter sample, () denotes number of blows to drive sampler
U()F <i>,</i> U()P	F- not recovered, P-partially recovered
U38	Undisturbed 38mm diameter sample
P(F), (P)	Piston sample - disturbed
В	Bulk sample - disturbed
D	Jar Sample - disturbed
W	Water Sample
CBR	California Bearing Ratio mould sample
ES	Chemical Sample for Contamination Analysis
SPTLS	Standard Penetration Test S lump sample from split sampler
CORE RECOVERY ANI) ROCK QUALITY
TCR	Total Core Recovery (% of Core Run)
SCR	Solid Core Recovery (length of core having at least one full diameter as % of core run)
RQD	Rock Quality Designation (length of solid core greater than 100mm as % of core run)
	icient space for the TCR, SCR and RQD, the results may be found in the remarks column
lf	Fracture Spacing in mm (Minimum/Average/Maximum) NI - non intact, NR - no recovery
AZCL	Assumed Zone of Core Loss
NI	Non intact
GROUNDWATER	Groundwater strike
—	Groundwater level after standing period
Date/Water	Date of shift (day/month)/Depth to water at end of previous shift shown above the date
	and depth to water at beginning of shift given below the date
INSITU TESTING	
S	Standard Departmetion Test calls barrel complex
C	Standard Penetration Test - split barrel sampler
C SW/	Standard Penetration Test - solid 60° cone
SW	Standard Penetration Test - solid 60° cone Self Weight Penetration
SW Ivp, HVp (R)	Standard Penetration Test - solid 60° cone Self Weight Penetration In Situ Vane Test, Hand Vane Test (R) demonstrates remoulded strength
SW Ivp, HVp (R) K(F), (C), (R), (P)	Standard Penetration Test - solid 60° cone Self Weight Penetration In Situ Vane Test, Hand Vane Test (R) demonstrates remoulded strength Permeability Test
SW Ivp, HVp (R)	Standard Penetration Test - solid 60° cone Self Weight Penetration In Situ Vane Test, Hand Vane Test (R) demonstrates remoulded strength
SW Ivp, HVp (R) K(F), (C), (R), (P)	Standard Penetration Test - solid 60° cone Self Weight Penetration In Situ Vane Test, Hand Vane Test (R) demonstrates remoulded strength Permeability Test Hand Penetrometer Test
SW Ivp, HVp (R) K(F), (C), (R), (P) HP	Standard Penetration Test - solid 60° cone Self Weight Penetration In Situ Vane Test, Hand Vane Test (R) demonstrates remoulded strength Permeability Test Hand Penetrometer Test
SW Ivp, HVp (R) K(F), (C), (R), (P) HP MEASURED PROPER	Standard Penetration Test - solid 60° cone Self Weight Penetration In Situ Vane Test, Hand Vane Test (R) demonstrates remoulded strength Permeability Test Hand Penetrometer Test
SW Ivp, HVp (R) K(F), (C), (R), (P) HP MEASURED PROPERT N	Standard Penetration Test - solid 60° cone Self Weight Penetration In Situ Vane Test, Hand Vane Test (R) demonstrates remoulded strength Permeability Test Hand Penetrometer Test TIES Standard Penetration Test - blows required to drive 300mm after seating drive


c_u Undrained Shear Strength (kN/m²) CBR California Bearing Ratio

ROTARY DRILLING SIZES


Index Letter	Nominal Diameter (mm)					
	Borehole	Core				
Ν	75	54				
н	99	76				
Р	120	92				
S	146	113				




Key Sheet

	Priority Geotechnical Site
2	54*
No.	and the second sec
	Site Location
	Brann B 6°
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
\sim	
72	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
$\langle \cdot \rangle$	JOB NAME:
	Dursey Island Cable Car &
C, C, /	Visitor Centre Development
	Sheet Title:
	EXPLORATORY LOCATION LAYOUT
	LATOOT
	JOB NUMBER:
	P19033
	1 10000
	DRAWING NUMBER:
	P19033-SI-A
	DRAWN BY:
	Gary Curtin
	DATE: 15/04/2019
	SCALE: APPROVED:
	1:2000 ON A3 GH
	REVISION:
	D01
	pgl priority







JOB NAME:

# Dursey Island Cable Car & Visitor Centre Development

Sheet Title:

### LOCATION PLAN

JOB NUMBER:

DRAWING NUMBER:

DRAWN BY: Gary Curtin

DATE: 15/04/2019

SCALE:

REVISION: D01

1:500 ON A3

I

APPROVED:

GH

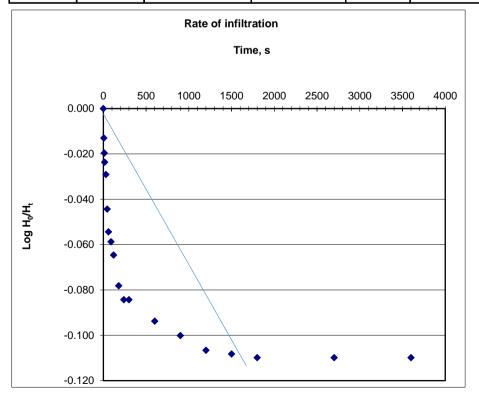
priority geotechnical

P19033-SI-02

P19033

pg	<b>prio</b>	rity			Tel Fax	: 021 4 c: 021 4	chnical L 631600 4638690 otechnica					led By: AK ged By: SR	Borehole N RC01 Sheet 1 of	
Proje	ct Nam	e: Dursey Visitor (	Island Ca Centre	ble Ca	ar &	Proje P1903			Co-ords:	5081	I0E - 4185	58N	Hole Typ Rotary cor	е
Loca	Location: Dursey Island, Co. Cork.			Level: 21.30			30m OD Scale		<b>Scale</b> 1:50	)				
Clien	t:	Cork Co	ounty Cou	ncil					Dates:	14/0	04/2019		15/04/2019	
Well	Water Strike (m)	Depth (m)	Type /Fs (min, max, avg)	CC TCR	SCR		Depth (m) / FI (/m)	Leve (mOI			Stra	tum Descripti	on	
		- <del>74 (19.22/74 for</del> 225mm) (C) 1.00 - 2.50		40	10	6	1.00	20.30		with	n boulder co	npted. Poor reco		1 -
		N=89 (12,19/20,20,24,2 5) (C) 2.50 - 4.00		36	8	0	2.50	18.80			e run atten athered SII	npted. Poor reco TSTONE.	very.	3 -
		0 (25,25/0 for Omm) (C) 4.00 - 4.85		82	47	0	4.00	17.30		SIL We Fra	TSTONE. athering: S ctures: Set	ak to medium str lightly weathered 1 dipping 60 to a tepped rough fra	1. 30 degrees,	4 -
		4.85 - 6.35	10mm 330mm 160mm	100	100	27	6/m			sur wid rou	faces. Set 2 e spacing, gh.	2 dipping 10 to 2 stepped rough to act from 4.00m to	5 degrees, o undulated	6 -
		6.35 - 7.80	40mm 450mm 280mm	100	100	38	5/m							7 -
		7.80 - 9.40	40mm 500mm 220mm	38	38	31	3/m							8 -
Grou	ndwate	ا ۲:		1	1	1	Hole Ir			1		Equipment:	Deltabase 520	)
Struck (	m bgl) Re	ose to After (m	in) Sealec		Comr See shi	<b>ment</b> ift data.		<b>th (m bg</b> .60	I) Hole Dia (m 76	ım) Cas	ing Dia (mm) 131	Method:	Compressed a	air mist
instal	nole terr led. Dep	ninated at 18. oth response f ibiliy test carrie	rom 2.00r	n o 10	.50m.	pipe Falling	Shift D	oata:	Groundwater (n 3.4 3.4 3.4	1 1 1	Shift 4/04/2019 08: 4/04/2019 18: 5/04/2019 08:0 5/04/2019 18:0	00 12.40 00 12.40	) Remarks Start of shi End of shif Start of shi End of boreh	ft. t. ft.

			Priority Geotechnical Ltd. Tel: 021 4631600 Fax: 021 4638690 www.prioritygeotechnical.ie									AK ged By: SR	Borehole N RC01 Sheet 2 of	3	
Proje	ct Nam	e: Dursey Visitor	[,] Island Ca Centre	ble Ca	ar &	Proje P1903			Co-ords:	5081	I0E - 4185	58N	Hole Typ Rotary cor		
Locat	tion:	Dursey	Dursey Island, Co. Cork.						Level:	21.3	0m OD		<b>Scale</b> 1:50	Scale	
Clien	t:	Cork Co	ounty Cou	ncil					Dates:	14/0	)4/2019		15/04/2019		
Well	Water Strike (m)	Depth (m)	Type /Fs (min, max, avg)	CC TCR	oring ( SCR	(%) RQD	Depth (m) / FI (/m)	Leve (mOI			Stra	tum Descripti	on		
		9.40 - 10.90 10.90 - 12.40 12.40 - 14.00 14.00 - 15.50 15.50 - 17.05 17.05 - 18.60	30mm 500mm 350mm 200mm 200mm 50mm 200mm 380mm 380mm 280mm 460mm 310mm	100 100 88 100 100	100 100 88 100 100	100 100 47 47 47 74 68	10/m 6/m 4/m 7/m 6/m			SIL We Fra unc sur wid rou Det	TSTONE. athering: S ctures: Set lulated to s faces. Set : e spacing, gh.	ak to medium str lightly weathered 1 dipping 60 to tepped rough fra 2 dipping 10 to 2 stepped rough to act from 4.00m to 50m.	d. 80 degrees, acture 5 degrees, o undulated	10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 -	
Groundwater: Struck (m bgl) Rose to After (min) Sealed Comment See shift data.							ition: Hole Dia (mr 76	n) Cas	ing Dia (mm	Equipment: Method:	Deltabase 520 Compressed a				
install	nole tern led. Dep	ninated at 18. oth response f biliy test carri	from 2.00r	n o 10	.50m.		Shift D	ata:	Groundwater (m 3.4 3.4 3.4	1 1 1	Shift 4/04/2019 08: 4/04/2019 18: 5/04/2019 08: 5/04/2019 18:	00 12.40 00 12.40	) Remarks Start of shif End of shif Start of shif End of boreh	ft. 't. ft.	


n				Pri			echnical L 1631600	Drilleo Ał		Borehole N				
P	geotechnic	al			Fax	<b>: 021</b>	4638690	al io			Logge		RC01	
			rsey Island Ca		-		eotechnica ct No.				SF		Sheet 3 of Hole Typ	
Visi		itor Centre		li Q	P190					10E - 41858N	١	Rotary cor		
		sey Island, Co	o. Cork	-				Level:	21.3	0m OD		<b>Scale</b> 1:50		
Clien	t:	Cor	k County Cou	-					Dates:	14/(	14/04/2019 1		15/04/2019	
Well	Water Strike (m)	Depth (m)	Type /Fs (min, max, avg)	Co TCR	ring SCR		Depth (m) / FI (/m)	Leve (mOI				m Descript		
	_						18.60	2.70	× × × × × × × × × × × × × × × × × × ×	SIL	nology: Weak t TSTONE. eathering: Sligh			
										uno sur wid rou	0	ped rough fr ipping 10 to 2 pped rough t	acture 25 degrees, to undulated	19 — 
											tail: Not intact 40m to 12.50n End of Bi			20
														21
														22
														23
														24
														25
														26
														27 —
Grou	ndwater	:					Hole Ir	nforma	ition:		E	quipment:	Deltabase 520	)
Struck (I	m bgl) Ro	se to Afte	er (min) Sealec		Comi See shi	<b>ment</b> ft data.	Hole Dep 18	<b>th (m bg</b> .60	I) Hole Dia (mi 76	n) Cas	sing Dia (mm) 131	ethod:	Compressed a	air mist
install	ole term ed. Dep	th respor	t 18.60m bgl. 5 nse from 2.00n carried out for	n o 10.	50m.		Shift D	ata:	Groundwater (m 3.4 3.4 3.4	1	Shift 4/04/2019 08:00 4/04/2019 18:00 5/04/2019 08:00 5/04/2019 18:00	Hole Depth (m bg 0.00 12.40 12.40 18.60	gl) Remarks Start of shii End of shii Start of shii End of boreh	ft. t. ft.

#### P19033 Falling head permeability test

Location	Dursey Island
BH ID	RC01
Test	1
Casing diameter	<b>100</b> mm
Casing depth	<b>4</b> m
Borehole depth	<b>6.35</b> m
Groundwater level	<b>3.40</b> m bgl
Date	14/04/2019

 $H_{w/}H_o$ 3.40

Min	Sec	depth, m bgl	vol, cu.m	Ht	log H ₀ /H _t
0	0	0.000	0.00000	3.400	0.000
0.08	5	0.100	0.00079	3.300	-0.013
0.17	10	0.150	0.00118	3.250	-0.020
0.25	15	0.180	0.00141	3.220	-0.024
0.50	30	0.220	0.00173	3.180	-0.029
0.75	45	0.330	0.00259	3.070	-0.044
1	60	0.400	0.00314	3.000	-0.054
1.5	90	0.430	0.00338	2.970	-0.059
2	120	0.470	0.00369	2.930	-0.065
3	180	0.560	0.00440	2.840	-0.078
4	240	0.600	0.00471	2.800	-0.084
5	300	0.600	0.00471	2.800	-0.084
10	600	0.660	0.00518	2.740	-0.094
15	900	0.700	0.00550	2.700	-0.100
20	1200	0.740	0.00581	2.660	-0.107
25	1500	0.750	0.00589	2.650	-0.108
30	1800	0.760	0.00597	2.640	-0.110
45	2700	0.760	0.00597	2.640	-0.110
60	3600	0.760	0.00597	2.640	-0.110



3.93E-03 ms⁻¹  $\mathbf{k}_{\text{mean}}$  $\mathbf{k}_{H} = \mathbf{k}_{V}$ 















	: 1	P1903 Durvey RC01. 16.40	Tsland Box	7 of 18.60	
			13.60 EDH		
Number:	RC01	Project Project No Engineer	Dursey Island P19033 Roughan & O`Donovan		

pg	<b>prior</b> geotechni	cal		ww	iority Tel Fax w.pric		AK ged By: OD	Borehole No. RC02 Sheet 1 of 2							
Proje	ct Name	e: Dursey Visitor	/ Island Ca Centre	ble Ca	ar &	<b>Proje</b> P1903	<b>ct No.</b> 33	No. Co-ords: 507			38E - 418	54N	Hole Typ Rotary cor		
Location:		Dursey	Dursey Island, Co. Cork.						Level:				<b>Scale</b> 1:50		
Clien	t:	Cork C	Cork County Council					I	Dates:	10/0	04/2019	1	12/04/2019		
Well	Water Strike (m)	Depth (m)						atum Descriptio	on						
		0 (50 for 5mm/0 for 0mm) (C)         2.25 - 3.75         3.75 - 5.00         5.00 - 6.50         6.50 - 7.15         7.15 - 8.70	120mm 450mm 300mm 100mm 310mm 340mm 150mm 300mm 500mm 500mm 150mm	100 100 100 100	100 100 100 100	30 12 37 49 36	2.25 6/m 7/m 3/m 6/m 2/m 5/m	11.45		Lith SIL We clay disc Fra clos smo	nology: Mea TSTONE. athering: S y smearing coloration. ctures: Ma se to mediu	dium weak, purple Blightly weathered and oxidation co in set dips 60 to 7 un, undulate to pl r set dips sub-hor	, with light louration '0 degrees, anar	1 2 3 4 5 6 7 8 8 9	
	ndwateı m bgl) Ro	r: se to After (n	nin) Sealec	I	Comr	nent		n <b>forma</b> oth (m bgl	<b>tion:</b> ) Hole Dia (mr	n) Cas	sing Dia (mm	Equipment: ) Method:	Deltabase 520		
	7.00	, , , , , , , , , , , , , , , , , , ,			See shi			.15	76		131				
<b>Rema</b> Boreh		ninated at 16	.15m bgl.				Shift D	)ata:	Groundwater (m Dry. 7.00 8.00 8.00 8.00	1 1 1 1	Shift 0/04/2019 08: 0/04/2019 18: 1/04/2019 08: 1/04/2019 18: 2/04/2019 08: 2/04/2019 18:	00         7.15           00         7.15           00         11.30           00         11.30	Remarks Start of shi End of shi Start of shi End of shi Start of shi End of boreh	ft. ft. ft. ft. ft.	

pQ			www.prioritygeotechnical.ie									led By: AK ged By: OD	Borehole No. <b>RC02</b> Sheet 2 of 2		
Proje	ct Nam	e: Dursey Visitor		ble Ca	ar &	<b>Proje</b> P190	<b>ct No.</b> 33		Co-ords:	5073	38E - 4185	54N	Hole Type Rotary cored		
Location:		Dursey	Island, Co	o. Cork	ζ.				Level: 1:		13.70m OD Sca		<b>Scale</b> 1:50		
Clien	t:	Cork C	ounty Cou	ncil				I	Dates:	10/0	04/2019	1	2/04/2019		
Well	Water Strike (m)	Depth (m)	Type /Fs (min, max, avg)	CC TCR	oring SCR	(%) RQD	Depth (m) / FI (/m)	Leve (mOD			Stra	tum Descriptio	on		
		8.70 - 9.75	100mm 380mm 200mm	100	100	24	7/m	(	************************************	SIL We clay	nology: Meo TSTONE. eathering: S y smearing	, with light			
		9.75 - 11.30	180mm 700mm 400mm	100	100	32	5/m			Fra clo: sm	discoloration. Fractures: Main set dips 60 to 70 degrees, close to medium, undulate to planar smooth. Minor set dips sub-horizontal, wide, stepped rough.				
		11.30 - 12.70	200mm 660mm 400mm	100	100	43	5/m							12 -	
		12.70 - 14.20	650mm 650mm 650mm 50mm 700mm	100	100	67	2/m 3/m							13 -	
		14.20 - 15.25	525mm 550mm 500mm	100	100	95	2/m							- 15 -	
		15.25 - 16.10	350mm 580mm 270mm	100	100	88	2/m 16.15	-2.45	X X X X X X X X X X X X X X X X X X X		End	of Borehole at 16.15	)m	- 16 -	
														17 -	
												r		18 -	
Struck (	ndwate mbgi) Ro 7.00	r: ose to After (n	nin) Sealec			<b>ment</b> ift data.			<b>tion:</b> ) Hole Dia (mr 76	n) Cas	sing Dia (mm) 131	Equipment: Method:	Deltabase 520 Compressed a		
<b>Rema</b> Boreh		ninated at 16	.15m bgl.				Shift D	ata:	Groundwater (m Dry. 7.00 8.00 8.00 8.00	1 1 1 1 1	Shift 0/04/2019 08: 0/04/2019 18: 1/04/2019 08: 1/04/2019 18: 2/04/2019 08: 2/04/2019 18:	00         7.15           00         7.15           00         11.30           00         11.30	Remarks Start of shi End of shi Start of shi End of shi Start of shi End of boreh	ft. t. ft. 't. ft.	















Na ID	• : me : : om :	Durizey RCO2	Island Box:	16.10m	
	All Contractions		2.20 a 12.0 a a a a a		
Number:	RC02	Project Project No Engineer	Dursey Island P19033 Roughan & O`Donovan		

pg	<b>prio</b>	rity			Tel Fax	: 021 4 :: 021 4	echnical L 4631600 4638690 eotechnica					led By: AK ged By: OD	Borehole N RC03 Sheet 1 of	3
Proje	ct Nam	e: Dursey Visitor	lsland Ca Centre				ct No.		Co-ords:	5054	4E - 416		Hole Typ Rotary cor	е
Locat	tion:	Dursey	Island, Co	. Cork	κ.	•		l	evel:	18.0	5m OD		<b>Scale</b> 1:50	
Clien	t:	Cork Co	ounty Cou	ncil				ſ	Dates:	08/0	04/2019		09/04/2019	
Well	Water Strike (m)	Depth (m)	Type /Fs (min, max, avg)	Cc TCR	scr	(%) RQD	Depth (m) / FI (/m)	Leve (mOD			Stra	tum Descripti	on	
		<del>- 0 (50 for 0mm/0</del> for 0mm) (C) 0.70 - 1.50		94	94	44	0.70 2/m	17.35	الدار میلار و میلال و میلار و میلال و میلار و میلال و میلار و میلار و میلار و میلار و میلار و میلار و میلال و میلار و میلال و	Lith SIL We clay	ology: Wea TSTONE. athering: S	ing. Driller descr d rock. ak to medium str lightly weathered oxidation discolo n set dips 70 to	ong, purple, d with minor ration.	1 -
		1.50 - 3.00	130mm 700mm 400mm	100	100	20	5/m			clos smo	se to mediu poth. Minor	m, planar to und set dips 45 deg le, stepped roug	lulate rees,	2
		3.00 - 4.60	320mm 800mm 420mm	100	100	49	4/m							4
		4.60 - 6.15		100	100	55	2/m 2/m							5 -
		6.15 - 7.45	280mm 460mm 300mm	100	100	50	4/m							7 -
		7.45 - 9.05	170mm 750mm 400mm	100	100	28	6/m							8
Grou	ndwate	r:		<u> </u>			Hole Ir	l nforma	tion:			Equipment:	Deltabase 520	
	m bgl) Ro 9.00	ose to After (m	in) Sealec		Comi See shi			<b>ith (m bgl</b> ) .65	Hole Dia (mr 76	n) Cas	i <b>ng Dia (mm</b> ) 131	Method:	Compressed a	air mist.
dia) ir	ole terr stalled	ninated at 13. from GL to 13 o 13.65m bgl.	3.65m bgl.				Shift D	)ata:	Groundwater (m Dry. 9.00 9.00 9.00	000000000000000000000000000000000000000	Shift 8/04/2019 08: 8/04/2019 18: 9/04/2019 08: 9/04/2019 18:	00 11.10 00 11.10	) Remarks Start of shit End of shif Start of shif End of boreh	ft. 't. ft.

pę	<b>prior</b> geotechn			ww	Tel Fax w.pric	: 021 4 :: 021 4 orityge	echnical L 4631600 4638690 eotechnica					AK ged By: OD	Borehole N RC03 Sheet 2 of	2
Proje	ect Nam	e: Dursey Visitor	[,] Island Ca Centre	ble Ca	ar &	<b>Proje</b> P1903	<b>ct No.</b> 33		Co-ords:	5054	14E - 4165	52N	Hole Typ Rotary cor	
Loca	tion:	Dursey	Island, Co	. Cork	ζ.	-		I	_evel:	18.0	5m OD		<b>Scale</b> 1:50	
Clien	ıt:	Cork C	ounty Cou	ncil					Dates:	08/0	04/2019	C	9/04/2019	
Well	Water Strike (m)	Depth (m)	Type /Fs (min, max, avg)	CC TCR	scr	(%) RQD	Depth (m) / FI (/m)	Leve (mOD			Stra	tum Descriptio	on	
		9.05 - 10.55 10.55 - 11.10 11.10 - 12.70 12.70 - 13.65	150mm 600mm 300mm 200mm 400mm 250mm 120mm 480mm 450mm	100	100	28 91 28 25	5/m 1/m 7/m 3/m 13.65	4.40		SIL We clay Fra clos smo	TSTONE. athering: S y infill and c ctures: Mai se to mediu ooth. Minor dium to wic	ak to medium stro lightly weathered oxidation discolor. in set dips 70 to 8 im, planar to undu set dips 45 degr le, stepped rough	with minor ation. 0 degrees, Jlate ees,	10 - 11 - 12 - 13 - 13 - 14 - 15 - 16 - 17 - 18 - 18 - 18 - 18 - 18 - 18 - 18
	ndwate		(in) 0 i i		0-		Hole Ir					Equipment:	Deltabase 520	
	(m bgl) Ro 9.00	ose to After (m	nin) Sealec		Comr See shi	<b>nent</b> ft data.	Hole Dep 13	<b>th (m bgl</b> .65	) Hole Dia (mr 76	n) Cas	sing Dia (mm) 131	Method:	Compressed a	air mist.
dia) ir	nole tern nstalled	ninated at 13. from GL to 13 o 13.65m bgl.	3.65m bgl.				Shift D	oata:	Groundwater (m I Dry. 9.00 9.00 9.00	0 0 0	Shift 8/04/2019 08: 8/04/2019 18: 9/04/2019 08: 9/04/2019 18:	00 11.10 00 11.10	Remarks Start of shit End of shif Start of shit End of boreh	ft. t. ft.













pg	<b>J</b> prior geotechni	ity _{ical}			Tel Fax w.prio	: 021 4 c: 021 4 orityge	echnical L 4631600 4638690 eotechnica						AK ged By: OD	Borehole N RC04 Sheet 1 of	ŀ
Proje	ct Nam	e: Dursey Visitor	[,] Island Ca Centre	ble Ca	ar &	<b>Proje</b> P1903	<b>ct No.</b> 33		Co-o	rds:	5052	20E - 416	19N	Hole Typ Rotary cor	
Locat	tion:	Dursey	Island, Co	o. Cork	κ.				Leve	l:	20.9	0m OD		<b>Scale</b> 1:50	
Clien	t:	Cork C	ounty Cou	ncil					Date	s:	09/0	4/2019	(	09/04/2019	
Well	Water Strike (m)	Depth (m)	Type /Fs (min, max, avg)	CC TCR	SCR		Depth (m) / FI (/m)	Leve (mOI		egend		Stra	tum Descripti	on	
		0 (50 for 5mm/0 for 0mm) (C) 0.40 - 1.40 1.40 - 2.90 2.90 - 3.90 3.90 - 5.50 5.50 - 7.00	100mm 450mm 200mm 140mm 550mm 370mm 270mm 270mm 200mm 760mm 300mm	100 100 100 100	100 100 100 100	0 19 10 22 30	0.40 7/m 4/m 6/m 5/m 4/m 7.00	20.50			Lith SIL We oxid Fra 70 1	TSTONE. athering: S dation disc ctures: 1 s to 80 degre both.	lium strong, purp lightly weatherec	l with light n set dips to undulate	
	ndwate	r: ose to After (m	nin) Sealec		Comi ne enc	ment ountered	Hole Ir Hole Dep d. 7.				n) Cas	<b>ing Dia (mm</b> 131	Equipment: Method:	Deltabase 520 Compressed a	
<b>Rema</b> Boreh		ninated at 7.0	00m bgl.				Shift D	)ata:	Grour	ndwater (m b	0	<b>Shift</b> 9/04/2019 08: 9/04/2019 18:		Remarks Start of shi End of boreh	ft.

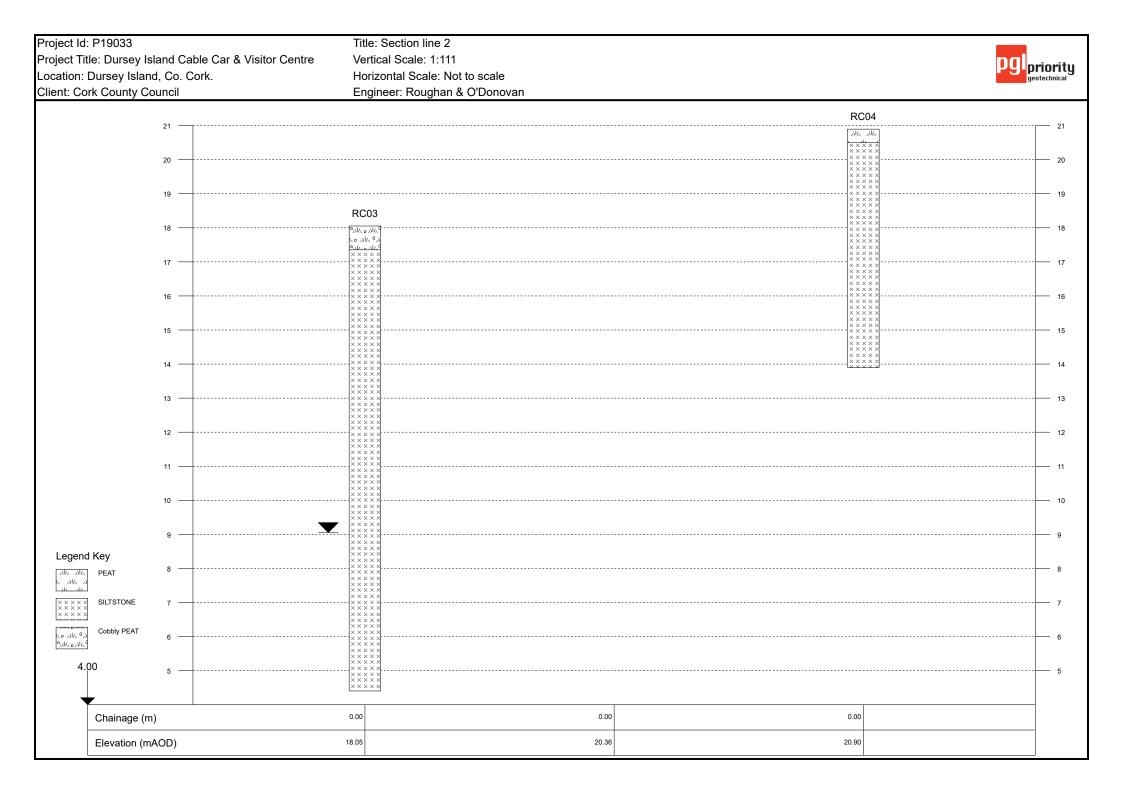






Nam ID : From	AOCA SOLIN	y Island F Box: 3 TO: 7 550	
Number: RC04	Project Project No Engineer	Dursey Island P19033 Roughan & O`Donovan	

pg	<b>priori</b> geotechnica	ty			Tel: 02 Fax: 02 priorit	otechnical 21 4631600 21 4638690 ygeotechni				Log	led By: AK ged By: N/A	Borehole N RCTW Sheet 1 of	<b>01</b> 3
Proje	ct Name		y Island Ca Centre	ble Car		<b>oject No.</b> 9033		Co-ords:	5077	78E - 4190	)2N	Hole Typ Rotary open	
Locat	tion:	Dursey	/ Island, Co	. Cork.				Level:	23.7	0m OD		<b>Scale</b> 1:50	
Clien	t:	Cork C	County Cou	ncil				Dates:	12/0	04/2019		13/04/2019	
Well	Water Strike (m)	Depth (m)	Type /Fs (min, max, avg)		i <b>ng (%)</b> SCR R	Depth (n 2D / FI (/m)		el D) Legend		Stra	tum Descripti	on	
	ndwater:						Informa		Ope	en hole bor drock. Assu	Equipment:	ibed: E lithology.	
		e to After (r	nin) Sealec		Commen	t Hole D	epth (m bộ	gl) Hole Dia (mr	n) Cas	sing Dia (mm)	Method:	Compresed a	
				Se	e shift da	ta.	25.50	140		140			
dia) ir	nole termi Istalled fr	nated at 25 om 0.0m to 25.50m bgl	25.50m bg			m	Data:	Groundwater (m Dry. 4.0 0.0	1: 1: 1:	Shift 2/04/2019 08: 2/04/2019 18: 3/04/2019 08: 3/04/2019 18: 3/04/2019 18:	00 5.00 00 5.00	Remarks Start of shi End of shi Start of shi End of boreh	ft. ft. ft.


pQ				ד F www.p	el: 021 ax: 021 riorityge	echnical L 4631600 4638690 eotechnica				Log	led By: AK ged By: N/A	Borehole N RCTW Sheet 2 of	<b>01</b>
Proje	ect Name	Durse Visitor	y Island Ca [.] Centre	ble Car &	<b>Proje</b> P190	<b>ct No.</b> 33		Co-ords:	5077	78E - 4190	2N	Hole Typ Rotary open	
Loca	tion:	Durse	y Island, Co	. Cork.				Level:	23.7	0m OD		<b>Scale</b> 1:50	
Clien	t:	Cork C	County Cou	ncil			1	Dates:	12/0	)4/2019		13/04/2019	
Well	Water Strike (m)	Depth (m)	Type /Fs (min, max, avg)	Corin TCR SC		Depth (m) / FI (/m)	Leve (mOD			Stra	tum Descripti	on	
									Ope	en hole bori	ng. Driller descr med SILTSTON	ibed: E lithology.	10 - 11 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 18 -
	mdwater:	e to After (ı	min) Sealed	l Ca	mment	Hole Ir Hole Dep		<b>tion:</b> ) Hole Dia (mn	n) Cas	ing Dia (mm)	Equipment:	Deltabase 520	
J. UUR (			iiiii Gealet		shift data.		50 .50	140 140	, 048	140	Method:	Compresed a	ır mist.
dia) ir	nole termi nstalled fr		5.50m bgl. 5 9 25.50m bg I.			Shift D	)ata:	Groundwater (m I Dry. 4.0 0.0	1: 1: 1:	Shift 2/04/2019 08:0 2/04/2019 18:0 3/04/2019 08:0 3/04/2019 18:0	00 5.00 00 5.00	Remarks Start of shi End of shi Start of shi End of boreh	ift. ft. ift.

pg	<b>priori</b> geotechnic	ty a			Tel Fax w.prio	: 021 4 :: 021 4 orityge	echnical L 1631600 4638690 eotechnica				Log	led By: AK ged By: N/A	Borehole N RCTW Sheet 3 of	<b>01</b> f 3
Proje	ct Name		y Island Ca Centre	ble Ca	ır &	<b>Proje</b> P1903			Co-ords:	5077	78E - 4190	2N	Hole Typ Rotary open	
Locat	tion:	Durse	y Island, Co	o. Cork		-			Level:	23.7	0m OD		<b>Scale</b> 1:50	
Clien	t:	Cork (	County Cou	ncil					Dates:	12/0	)4/2019	1	3/04/2019	
Well	Water Strike (m)	Depth (m)	Type /Fs (min, max, avg)	Co TCR	ring SCR	(%) RQD	Depth (m) / FI (/m)	Leve (mOI			Stra	tum Descriptio	on	
							25.50	-1.80		Op Bed	Jrock. Assu	ng. Driller descri med SILTSTONE	ilithology.	19 20 21 22 23 23 24 25 26 26
	ndwater	: se to After (	min) Sealed	1	Com	ment	Hole Ir		l <b>tion:</b> I) Hole Dia (mi	n) Cas	ing Dia (mm)	Equipment:	Deltabase 52	
			, Jealet			ft data.	-	.50	140 III	. <i>.,</i> ods	140	Method:	Compresed a	ır mist
dia) ir	ole term	inated at 25 rom 0.0m to 25.50m bg	o 25.50m bạ				Shift D	ata:	Groundwater (m Dry. 4.0 0.0	1	Shift 2/04/2019 08:( 2/04/2019 18:( 3/04/2019 08:( 3/04/2019 18:(	00 5.00 00 5.00	Remarks Start of sh End of shi Start of sh End of boreł	ift. ft. ift.

Pglpriority geotechnical	Dursey Isla	Te Fa www.pri nd Cable Car &	I: 021 46 x: 021 46 oritygeo Project	638690 otechnical t No.	l.ie	Co-ords:		AK gged By: N/A 64N	Borehole No RCTW0 Sheet 1 of 3 Hole Type	)2 3
Location:	Visitor Cent	re nd, Co. Cork.	P19033	3		.evel:	23.27m OD		Rotary core Scale	ed
					_				1:50	
Client:	Cork County		(9/)	anth (m)		Dates:	05/04/2019	(	07/04/2019	
Well Water Strike (m)	/Fs	ype (min, (, avg) TCR SCR			Level (mOD			atum Descripti		
				1.20	22.07		Open hole bo	ring. Driller descr umed Siltstone.		1 · 2 · 3 · 4 · 7 · 8 · 8 ·
Groundwater:				Hole Inf				Equipment:	Deltabase 520	
Struck (m bgl) Rose 4.50	to After (min)		i <b>ment</b> iift data.	Hole Depth 25.5		Hole Dia (mn 140	n) Casing Dia (mn 140	^{ı)} Method:	Compressed ai	ir
		ogl. 50mm dia. st 10.0m to 20.5m l		Shift Da	ıta:	Groundwater (m t Dry Dry 4.5 4.5 0	bgl) Shift 0 05/04/2019 18 06/04/2019 18 06/04/2019 18 06/04/2019 18 07/04/2019 18 07/04/2019 18	1.00           1.00           1.00           1.00           13.00           13.00	Remarks Start of shift. End of shift. Start of shift. End of shift. Start of shift. End of boreho	

pg	prio	<b>rity</b>				Tel: Fax	021 40 : 021 4	chnical L 631600 638690 otechnica				Log	led By: AK ged By: N/A	Borehole N RCTW Sheet 2 of	02
Projec	ct Nam	ne:	Dursey I Visitor C	sland Ca entre	ble Ca		Projec P1903		(	Co-ords:	5049	98E - 4156	64N	Hole Typ Rotary cor	be
Locat	ion:		Dursey Is	sland, Co	. Cork				I	Level:	23.2	7m OD		<b>Scale</b> 1:50	
Client	:		Cork Cou	unty Cou	ncil				1	Dates:	05/0	4/2019		07/04/2019	
Well	Water Strike (m)		epth (m)	Type /Fs (min, max, avg)	Co TCR	<b>ring (</b> SCR	<b>%) [</b> RQD	Depth (m) / FI (/m)	Leve (mOD			Stra	tum Descripti	on	
													ing. Driller descr med Siltstone.	IDEQ:	10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 -
Grour	ndwate	er:	I		<u> </u>			Hole Ir	forma	tion:			Equipment:	Deltabase 52	0
	n bgl) <b>R</b> 1.50	lose to	After (mir	ı) Sealed		Comn See shif			<b>th (m bgl</b> .50	) Hole Dia (mr 140	n) Cas	i <b>ng Dia (mm)</b> 140	Method:	Compressed	air
	ole ter		ed at 25.5 e zone fro					Shift D	ata:	Groundwater (m Dry Dry 4.5 4.5 0	0: 0: 0: 0: 0:	Shift 5/04/2019 08:( 5/04/2019 18:( 6/04/2019 08:( 6/04/2019 18:( 7/04/2019 18:(	00         1.00           00         1.00           00         13.00           00         13.00	) Remarks Start of sh End of shi Start of sh End of shi Start of sh End of boref	ift. ift. ift. ift. ift.

priority	}	Te Fa	l: 021 46 x: 021 40					Log	led By: AK ged By: N/A	Borehole N RCTW Sheet 3 of	<b>02</b> 3
Project Name:	Dursey Island Visitor Centre	Cable Car &	Projec P19033		c	co-ords:	5049	8E - 4156	64N	Hole Typ Rotary cor	
Location:	Dursey Island,	Co. Cork.			L	.evel:	23.2	7m OD		<b>Scale</b> 1:50	
Client:	Cork County C	ouncil				Dates:	05/0	4/2019	(	07/04/2019	
Well Water Strike (m)	Depth Type /Fs (min max, avg			Depth (m) / FI (/m)	Level (mOD			Stra	tum Descripti	on	
				25.50	-2.23			lrock. Assu	ing. Driller descri med Siltstone.		19 20 21 22 23 24 25 26 27
Groundwater:					format				Equipment:	Deltabase 520	
Struck (m bgl) Rose 4.50	to After (min) Sea		n <b>ment</b> nift data.	Hole Dep 25	<b>th (m bgl)</b> .50	Hole Dia (mr 140	n) Cas	ing Dia (mm) 140	Method:	Compressed a	air
	ated at 25.5m bgl. nse zone from 10.			Shift D	ata:	Groundwater (m Dry Dry 4.5 4.5 0	0: 0: 0: 0: 0: 0:	Shift 5/04/2019 08: 5/04/2019 18: 6/04/2019 08: 6/04/2019 18: 7/04/2019 08: 7/04/2019 18:	00         1.00           00         1.00           00         13.00           00         13.00	Remarks Start of shi End of shif Start of shi End of shi Start of shi End of boreh	ft. 't. ft. 't. ft.



roject Id: P19033 roject Title: Dursey Isla ocation: Dursey Island lient: Cork County Cou	and Cable Car & Visitor Centre l, Co. Cork. uncil	Title: Section line 1 Vertical Scale: 1:164 Horizontal Scale: Not to scale Engineer: Roughan & O'Donovan			priority geotechnical
	22		RC01		22
	21		[?\\\\c_\\\\c_]		21
	21				21
	20				20
	19				19
	18		× × × × × × × × × × × × × × ×		18
			$\begin{array}{c} \times \times \times \times \times \\ \times \times \times \times \times \\ \end{array}$		
	17				17
	16				16
	15		× × × × × × × × × × × × ×		15
		RC02	× × × × × × × × × × × × × × ×		
	14	مرابع مرابع ایران مرابع			14
	13	ده مالد ممالد م. مالده مالد ۲	× × × × × × × × × × × × × × × × × × ×		13
	12	(2000)	× × × × × × × × × × × × × ×		
	12	xxx xx xx	$\begin{array}{c} \times \times \times \times \times \\ \times \times \times \times \times \\ \times \times \times \times \times \end{array}$		12
	11				11
	10				10
	9	× × × × × × × × × × × × × × ×	× × × × × × × × × × × × × × × × × × ×		9
		× × × × × × × × × × × × × × × × × × ×			
	8	× × × × × × × × × × × × × × × × × × ×			8
	7				
	6	× × × × × × × × × × × × × × × ×	× × × × × × × × × × × × × × ×		
	-		× × × × × × × × × × × × × × ×		
	5	× × × × × × × × × × × × × × × × × × ×			5
	4	× × × × × × × × × × × × × × × × × × ×			4
Legend Key	3	× × × × × × × × × × × × × × × × × × ×			
Cobbly PEAT		× × × × × × × × × × × × × × × × × × ×	<u> ×××××</u>		
	2	××××× ××××× ×××××			2
BOULDERS	1				1
	0	× × × × × × × × × × × × × × × × × × ×			0
SILTSTONE		× × × × × × × × × × × × × × ×			
	-1				
-3.00	-2				
Chainage (m)		82.71	82.71	82.71	
Elevation (mA	OD)	13.70	21.30	20.80	

Job Name:	Dursey Island			
ob Number:	P19033			
Test Carried Out By:	AO			
Date:	10/04/19 to 12,	/04/19		
Percolation "T" Test	T1	T2	тз	1
	11	12	15	
Depth from GL to top of hole (mm)	400	300	300	
Depth from GL to base of hole (mm)	800	700	700	
Depth of Hole (mm)	400	400	400	
Dimensions				
Lengh (mm)	300	300	300	
Width (mm)	300	300	300	
Date/time Presoaked	10/04/2019	10/04/2019	10/04/2019	
Tests				
Date	11/04/2019	11/04/2019	11/04/2019	
Time filled to 400mm	12:35	15:00	13:00	
Time water level 300mm	13:30	17:45	14:55	
Time to drop 100mm (min)	55	165	115	
Average	111.67	]		
Standard Method		T1		
Fill no	Time at 300m	Time at 200mm	Δt	Time at 300m
1	13:30	14:10	40	17:45
2	14:10	15:05	55	08:10
3	15:05	16:10	65	
Average			53.33	
Percolation "P" Tests	P1	P2	P3	
Depth from GL to top of hole (mm)	0	0	0	
Depth from GL to base of hole (mm)	400	400	400	
Depth of Hole (mm)	400	400	400	
Dimensions				
Lengh (mm)	300	300	300	
Width (mm)	300	300	300	
	10/04/2019	10/04/2019	10/04/2019	
Date/time Presoaked	10/01/2015			
Date/time Presoaked			11/04/2019	
Date/time Presoaked Date Time filled to 400mm	11/04/2019 17:50	11/04/2019 17:54	11/04/2019 18:04	

Time filled to 400mm	17:50	17:54	18:04
Time water level 300mm	18:05	18:06	18:19
Time to drop 100mm (min)	15	12	15

#### Average 14

Standard Method		P1			P2		P3		
Fill no	Time at 300m	Time at 200mm	Δt	Time at 300m	Time at 200mm	Δt	Time at 300m	Time at 200mm	Δt
1	18:05	17:00	55	18:06	18:49	43	18:19	18:45	26
2	08:46	09:42	56	09:05	10:00	55	09:00	09:38	38
3	09:45	10:45	60	10:10	11:15	65	09:40	10:28	48
Average			57.00			54.33			37.33

Т2

Time at 200mm 08:00 didn't reach Δt 855 Time at 300m

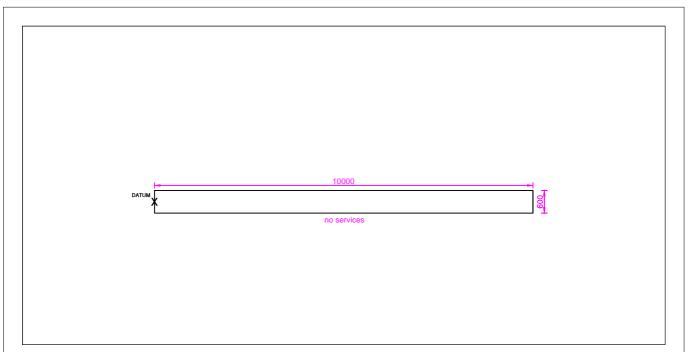
14:55 08:10 12:45



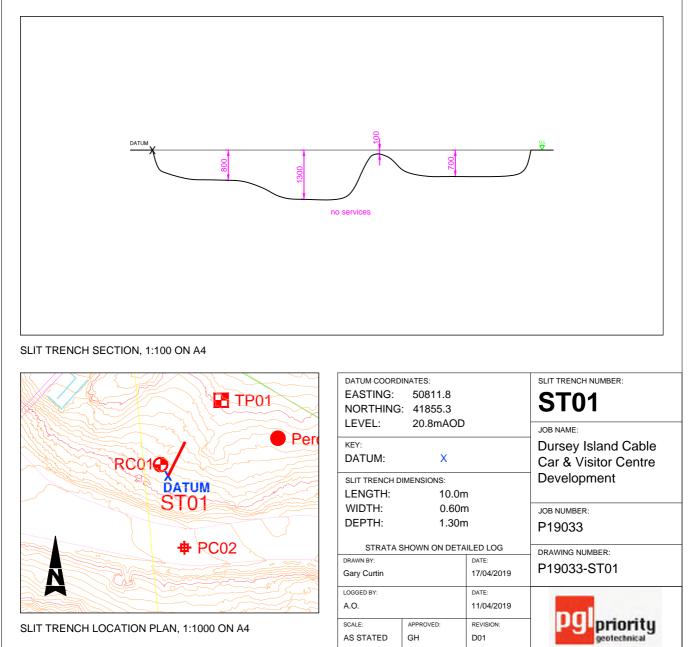
Т3

Time at 200mm

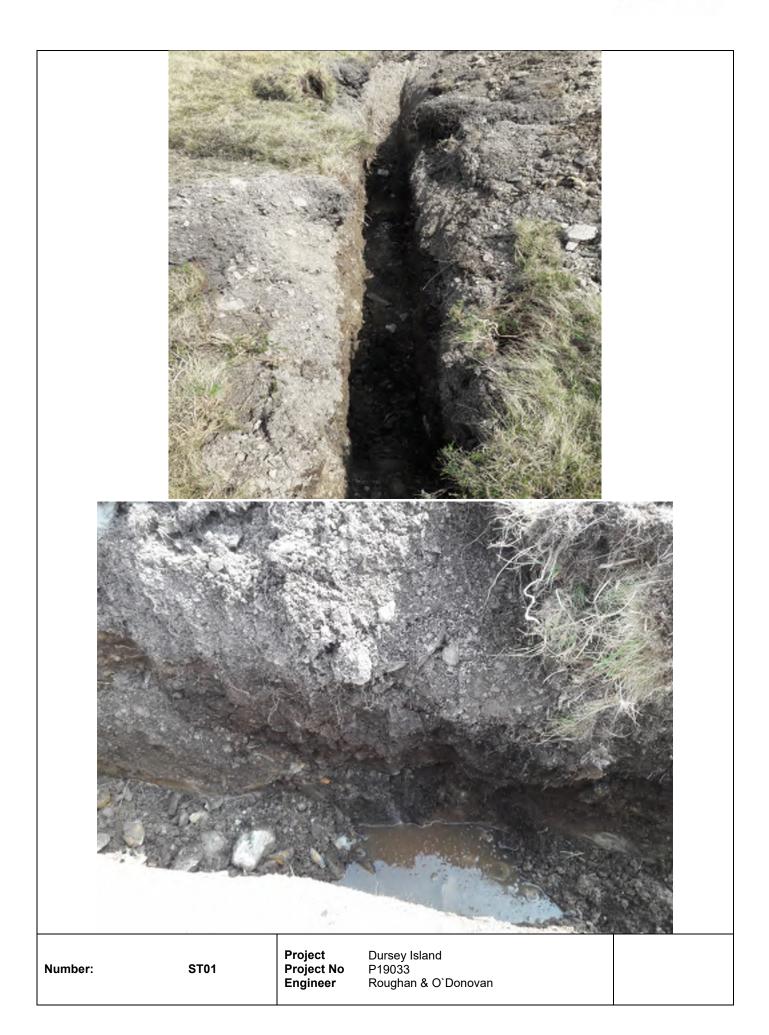
19:15 12:45 18:30 Δt 260 275 345 293.33


Layer	De	pth	Thickness,	м	aterial Descrip	tion **	Binder	Aggr	egate			
No.	From	То	mm				Diffee	Agg'	Туре			
1	0.00	0.04	40	gravel. Gr	vith crushed avel is varie size 20mm.	d lithology.	В	20	CR & G			
						Nominal diameter: mm						
		Hale Depth Test H	nome : Durse number : PI99 I.D : PCO 	ed function w		Binder: B = Bitumen T = Tar C = Cement N = None Aggregate: 40 = 40mm m. 28 = 28mm 20 = 20mm 14 = 10mm to 6 = 3m to 6mm Aggregate Ty CR = Crushed G = Gravel S = Slag O = Other E: 50762.88 N: 41865.42 Mod: 17.0	14mm n v <b>pe (Type)</b>					
Pavemer Number:			F	Project Project No Engineer	Dursey Islan P19033 OD	ıd	P	gl <mark>prio</mark>	rity			

	Layer	De	pth	Thickness,		lotorial Descrip		Dinder	Aggr	egate
	No.	From	То	mm	mm     Material Description     Binder     Agg'     Ty       40     Bitumen with gravel. Gravel is varied lithology. Max clast size is 40mm.     B     40     C       Nominal diameter: mm       Binder: Binder: B = Bitumen T = Tar C = Cement N = None	Туре				
	1	0.00	0.04	40	varied lith			В	40	CR
							Nominal dian	neter: mm		
			Job Hale Depti Test	LD : PCO LD : PCO + O OOL ( type: /	ed function		B = Bitumen $T = Tar$ $C = Cement$ $N = None$ $Aggregate:$ $40 = 40mm m$ $28 = 28mm$ $20 = 20mm$ $14 = 10mm to$ $6 = 3m to 6mr$ $Aggregate Ty$ $CR = Crushec$ $G = Gravel$ $S = Slag$	14mm n <b>/pe (Type)</b>		
,	pavern		ure. Das			пу.	<b>E:</b> 50816.14 <b>N:</b> 41865.42			
	vemen mber:			1	Project No	P19033	nd	P	gl <mark>prio</mark>	rity


Layer	De	pth	Thickness,	Matorial Doco	ription **	Binder	Aggr	egate
No.	From	То	mm	Bitumen with gravel. Gravel is varied lithology. Max clast size is 20mm. Nominal diameter Binder: B = Bitumen	Billuel	Agg'	Туре	
1	0.00	0.02	20	varied lithology. Max		В	20	GR
					Nominal dian	neter: mm		
		Job nu Hale I Depth : Test typ	eed on assum	ed function within the	B = Bitumen $T = Tar$ $C = Cement$ $N = None$ $Aggregate:$ $40 = 40mm m$ $28 = 28mm$ $20 = 20mm$ $14 = 10mm to$ $6 = 3m to 6mr$ $Aggregate Ty$ $CR = Crushed$ $G = Gravel$ $S = Slag$ $O = Other$ $E: 50516.64$ $N: 41559.519$	14mm n <b>/pe (Type)</b> I Rock		
Number: PC04 Project No P19033 Project No P19033						rity		

Layer	De	pth	Thickness,	Matorial Descrip	tion **	Bindor	Aggr	egate
No.	From	То	mm	mm     Material Description     Binder       20     Bitumen with gravel. Max clast size is 20mm.     B     20     GF       Nominal diameter: mm       Binder: B     B     20     GF       Nominal diameter: mm       Binder: B     B     20     GF       PC05 00 & 6 0.02m       Binder: B     B     20     GF       Nominal diameter: mm       Binder: B = Bitumen T = Tar C = Cement N = None	Туре			
1	0.00	0.02	20		/lax clast size	В	20	GR
					Nominal dian	neter: mm		
		Job nu Hole I. Depth:	mber: P190 D: PC05	33	<ul> <li>B = Bitumen</li> <li>T = Tar</li> <li>C = Cement</li> <li>N = None</li> <li>Aggregate:</li> <li>40 = 40mm m.</li> <li>28 = 28mm</li> <li>20 = 20mm</li> <li>14 = 10mm to</li> </ul>	14mm	ate size	
					<b>CR</b> = Crushed <b>G</b> = Gravel <b>S</b> = Slag <b>O</b> = Other <b>E</b> : 50523.449 <b>N</b> : 41591.488		:	
Pavemen Number:			F	Project No P19033	d	P	gl <mark>prio</mark>	rity


					Priority G	Geotech	nical Ltd.	Trial Pit	No
pglp	priority eotechnical				Tel: Fax:	021 4631 021 463	1600 8690	ST0	
							echnical.ie	Sheet 1	
Project Name:	Dursey Isla Centre	and Cable	e Car & Visitor		ect No.		<b>Co-ords:</b> 50812E - 41855N	Date	
			<b>2</b> 4.	P190	33		Level: 20.80m OD	11/04/20 Scale	e
	n: Dursey Isla						Dimensions (m):	1:25	5
Client:	Cork Count	-					Depth:           1.30m BGL	Logge AO.	)d
Water Strike & Backfill		oles & In Sit	-	Depth	Level (m OD)	Legend	Stratum Description		
Baga∢	Depth (m)	Туре	Results	(m)	(m 05,		(TOPSOIL) Black, organic clayey SAND.		T
				0.15	20.65		Brown grey, silty very sandy GRAVEL with high	cohble	
						° × ° ° °	content. Sand is fine to coarse. Gravel is fine to angular to sub-angular, Siltstone. Cobbles are	o coarse,	
	0.50 - 1.00	в				a X: , a X , a , a X: , a X , a , a X: , a X , a	to sub-angular, Siltstone.	C	
	0.00					**************************************	N. 70.		
						a×. a×.0			
	1.00					(a.×, , a,×, 0 (a, ×, , a, , 0) (a, ×, , a, , h)			
	1.00	D							
				1.30	19.50	a a a a a a a a a a a a a a a a a a a	ି ଅନୁ ଅନୁ 		
				1.00	18.00		SILTSTONE bedrock. End of Pit at 1.300m	/	
1									
1									2 -
									-
									-
									3 -
1									
1									-
1									
									4 -
1									
1									
									-
1									5 -
	Moderate.				/	Groundw	rater: 1.30m: Seepage flow rate.		<u> </u>
Backfill:	8T track machin Arisings.		1.30m bgl. Refer to D	2003	C OT01 for				
Kemarke.	Silt trench tem	Alnateu at i	.30m byi. Kelel to L	JWG P 1905	3 5101 101	Cross Seu	tional detail.		
1									





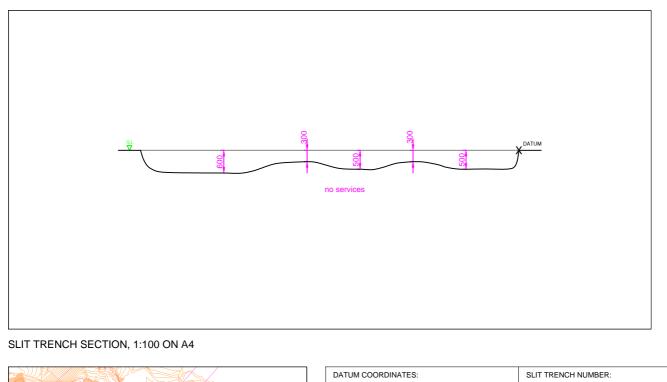


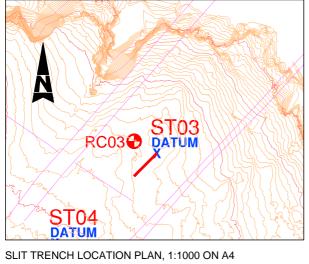











					Priority G			Trial Pit	No
pgip	riority eotechnical				Tel: Fax:	021 4631 021 463	1600 8690	ST0	3
							echnical.ie	Sheet 1	
Project Name:	Dursey Isla Centre	and Cable	Car & Visitor	Proje P190	ect No.		Co-ords:50550E - 41648N Level: 17.47m OD	Date 09/04/20	
	n: Dursey Isla	and Co. C	`ork		30		Dimensions (m): 9.00	Scale	e
							Depth:	1:25 Logge	
Client: ⊾ ≪ ≘	Cork Count				<del></del>		0.60m BGL	AO.	
Vater trike 3ackfi		oles & In Situ	u Testing Results	Depth (m)	Level (m OD)	Legend	Stratum Description		
Water Strike & Backfill	Depth (m) 0.10 - 0.60 0.50	Type       B       D				Legend	Stratum Description           (TOPSOIL) Dark brown, organic sandy CLAY.           Grey brown, slightly sandy GRAVEL with high content. Sand is fine to coarse. Gravel is angular, slithology.           SILTSTONE bedrock.           End of Pit at 0.600m	lar,	2
						<u> </u>			5 —
Plant:	Moderate. 3T mini digger.				ľ	Groundwa	ater: 0.60m: Seepage flow rate.		
Backfill: Remarks:	Slit trench tern	ninated at 0.6	.60m bgl. Refer to D	WG P1903	3 ST03 for	cross sect	tional detail.		

9000 portune no services



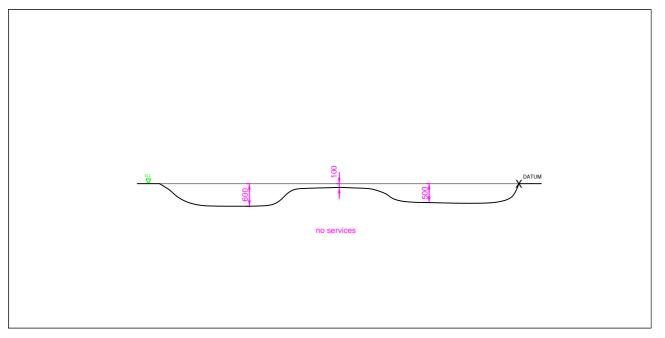




DATUM COORD	INATES:		SLIT TRENCH NUMBER:
EASTING:	50550.0		ST03
NORTHING	: 41648.3		3103
LEVEL:	17.467mAC	D	JOB NAME:
KEY:			Dursey Island Cable
DATUM:	Х		Car & Visitor Centre
SLIT TRENCH D			Development
	IMENSIONS:		Development
LENGTH:	9.00n	า	
WIDTH:	0.60n	า	JOB NUMBER:
DEPTH:	0.60n	า	P19033
STRATA S	SHOWN ON DETA	ILED LOG	DRAWING NUMBER:
DRAWN BY:		DATE:	DAGOOD OTOO
Gary Curtin		17/04/2019	P19033-ST03
LOGGED BY:		DATE:	
A.O.		09/04/2019	nal
SCALE:	APPROVED:	REVISION:	prioritu
AS STATED	GH	D01	geotechnical











					Priority 0	Geotech	nical Ltd.	Trial Pit	No
pgip	priority eotechnical				Tel: Fax:	021 4631 021 463	1600 8690	ST04	4
5	Utermica			v			echnical.ie	Sheet 1	of 1
Project	Dursey Isla	and Cable	e Car & Visitor		ect No.		<b>Co-ords</b> :50523E - 41625N	Date	
Name:	Centre			P190	133		Level: 20.36m OD 9.50	09/04/20 Scale	
Location	n: Dursey Isla	and, Co. C	Cork.				Dimensions (m):	1:25	
Client:	Cork Count	ty Counci	;il				Depth:	Logge AO	
ter kfill	Samp	oles & In Sit	tu Testing	Depth	Level			<u> </u>	
Water Strike & Backfill	Depth (m)	Туре	Results	(m)	(m OD)	Legend			
				$\top$			(TOPSOIL) Black, slightly sandy slightly gravel	IY PEAT.	
	0.20 - 0.60	В		0.20	20.16		Brown, slightly gravelly sandy SILT with high co	obble	
						× × × ×	content. Gravel is fine to coarse, angular, Siltst lithology. Cobbles are angular , Siltstone litholo	one ogy.	
	0.50	D				$\langle \times \times \times \rangle$	×		
2/22/22				0.60	19.76	<u>(*******</u> ***	× SILTSTONE bedrock. End of Pit at 0.600m	/	
							End of Fit at 0.000m		
									1 -
									-
									2 —
									-
									-
									3 -
									-
									-
									-
									-
									-
									4 -
									-
									-
									-
									-
									5 -
	Moderate.				<u> </u>	Groundw	rater: 0.20m: Seepage flow rate.		
Plant: Backfill:	3T mini digger. Arisings.								
Remarks:	Slit trench tern	ninated at 0	0.60m bgl. Refer to D	JWG P1903	3 ST04 for	cross sect	tional detail.		

9500 To services

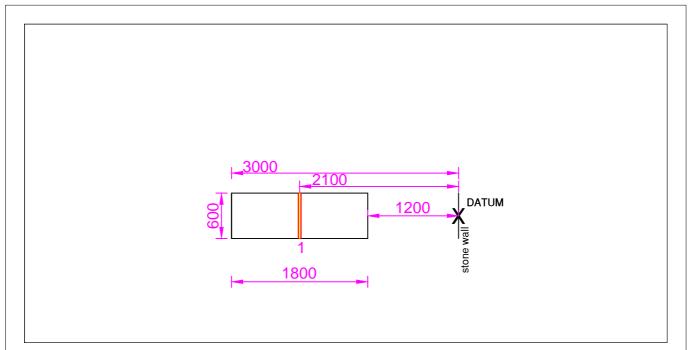




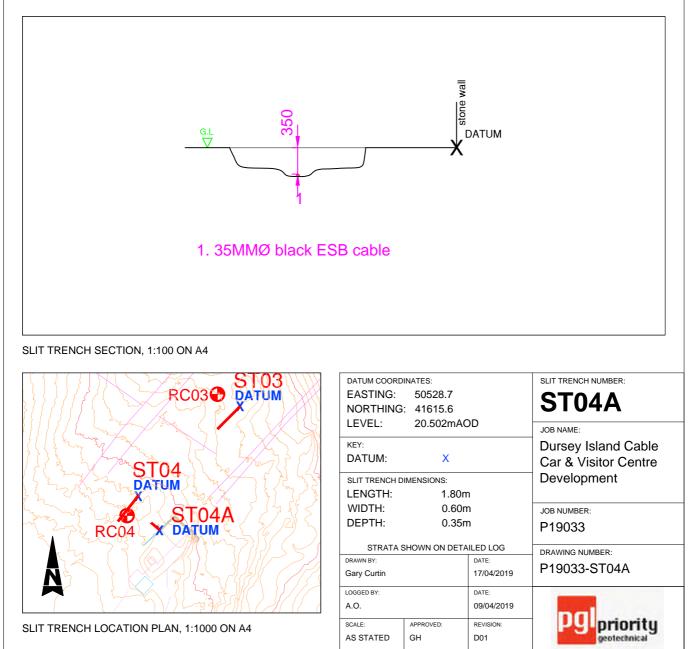
#### SLIT TRENCH SECTION, 1:100 ON A4



DATUM COORD	INATES:		SLIT TRENCH NUMBER:
EASTING:	50523.1		ST04
NORTHING	: 41624.6		3104
LEVEL:	20.362mAC	D	JOB NAME:
KEY: DATUM:	х		Dursey Island Cable Car & Visitor Centre
SLIT TRENCH D	IMENSIONS:		Development
LENGTH:	9.50m	า	
WIDTH:	0.60m	า	JOB NUMBER:
DEPTH:	1.20m	า	P19033
STRATA S	HOWN ON DETA	ILED LOG	DRAWING NUMBER:
DRAWN BY:		DATE:	
Gary Curtin		XX/XX/2019	P19033-ST04
LOGGED BY:		DATE:	
A.O.		YY/YY/2019	nal
SCALE:	APPROVED:	REVISION:	prioritu
AS STATED	GH	D01	geotechnical








					Priority C			Trial Pit	
Pylp	priority eotechnical				Fax:	021 4631 021 463	8690	ST04	
					-		echnical.ie	Sheet 1	
Project Name:	Dursey Isla Centre	nd Cable	e Car & Visitor	Proje P190	ect No. )33		Co-ords:50529E - 41616N Level: 20.50m OD	Date 09/04/20	
	n: Dursey Isla	nd Co.	Cork				Dimensions (m): 1.80	Scale	e
	-						Depth:	1:25 Logge	
Client:	Cork Count	-					0.40m BGL	AO.	,u
Water Strike & Backfill	Sampi Depth (m)	les & In Si Type	itu Testing Results	Depth (m)	Level (m OD)	Legend	Stratum Description		
- о ш				+	+		(MADE GROUND) Black, slightly sandy slightly	/ gravelly	
							PEAT with high cobble content.		-
				0.40	20.10				
				0.70	20.10		End of Pit at 0.400m		
									1 -
									-
									2 -
									-
									3 -
									-
									4 -
Stability:	Moderate.				<u> </u>	Groundw			5 —
Stability: Plant: Backfill:	3T mini digger.				ľ	Grounuw	ater: 0.40m: Seepage flow rate.		
Remarks:	Slit trench term	inated at (	0.40m bgl. Refer to D	WG P1903	3 ST04A fo	r cross se	ctional detail.		



SLIT TRENCH PLAN, 1:100 ON A4











nal					Priority C Tel:	Geotechr 021 4631	nical Ltd.	Trial Pit	
Pgp	priority eotechnical			,	Fax:	021 463		TP01	
Project	Dureev lela	and Cable	Car & Visitor		ect No.		Co-ords:50826E - 41875N	Sheet 1 o Date	<u>) 1</u>
Name:	Centre			P190			Level: 25.30m OD	11/04/20	19
Locatio	n: Dursey Isla	ind, Co. C	Cork.				Dimensions (m):	Scale 1:25	
Client:	Cork Count	ty Counci					Depth: 0		
er e& fill	Samp	les & In Situ	u Testing	Depth	Level	Γ		AO	
Water Strike & Backfill	Depth (m)	Туре	Results	(m)	(m OD)	Legend			
	0.50 0.50 - 1.00	DB		0.25	25.05		(TOPSOIL) Dark brown, organic slightly sandy Sand is fine to coarse. Grey, silty very sandy GRAVEL with high cobble content. Sand is fine to coarse. Gravel is fine to angular to sub-angular, Siltstone. SILTSTONE bedrock. End of Pit at 1.000m	e	1
									-
									5 —
Stability: Plant:	Moderate. 8T track machir	len le			'	Groundwa	ater: None encountered.		
Backfill:	Arisings.		)m bgl due to bedroo	ж.					

### P19033 **Dursey Island** 11/04/2019 Test 1 **TP01** I, m 1.5 0.3 0.8 b, m d, m 0.50 I base, m 1.5 d_eff, m I eff. m 1.5 Measure, m Depth Time, min Time, sec Fall, m Volume water, m bgl 0 0 0.50 0.00 0.000 0.30 60 0.00 0.000 1 0.30 0.50 2 0.31 120 0.49 0.01 0.004 3 0.32 180 0.48 0.02 0.009 5 0.47 0.03 0.014 0.33 300 10 0.35 600 0.45 0.05 0.023 20 0.38 1200 0.42 0.08 0.036 45 0.41 2700 0.39 0.11 0.050 60 0.42 3600 0.38 0.12 0.054 85 0.46 5100 0.072 0.34 0.16 112 0.48 6720 0.32 0.18 0.081 165 0.52 9900 0.28 0.22 0.099 180 0.53 10800 0.27 0.23 0.104

Area	0.45 m^2	V p75-25 theory	volume	0.1125 m^3
50% Area_eff, a _{p50}	1.35 m^2	$V_{p75-25actual}$	volume	0.18 m^3
50% Area_act, a _{p50}	1.17 m^2	t _{p 75-25 actual}	time	13590.00 s

13200

14400

18000

21600

24600



0.56

0.58

0.63

0.67

0.70

f

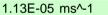
0.24

0.22

0.17

0.13

0.10


0.26

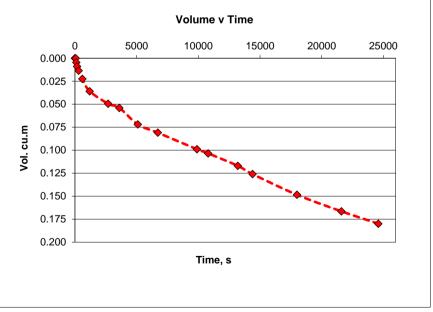
0.28

0.33

0.37

0.40




0.117

0.126

0.149

0.167

0.180



### NOTES:

See TP01 log for detailed soil description. No waterstrike encountered. Pit assumed unsaturated.

220

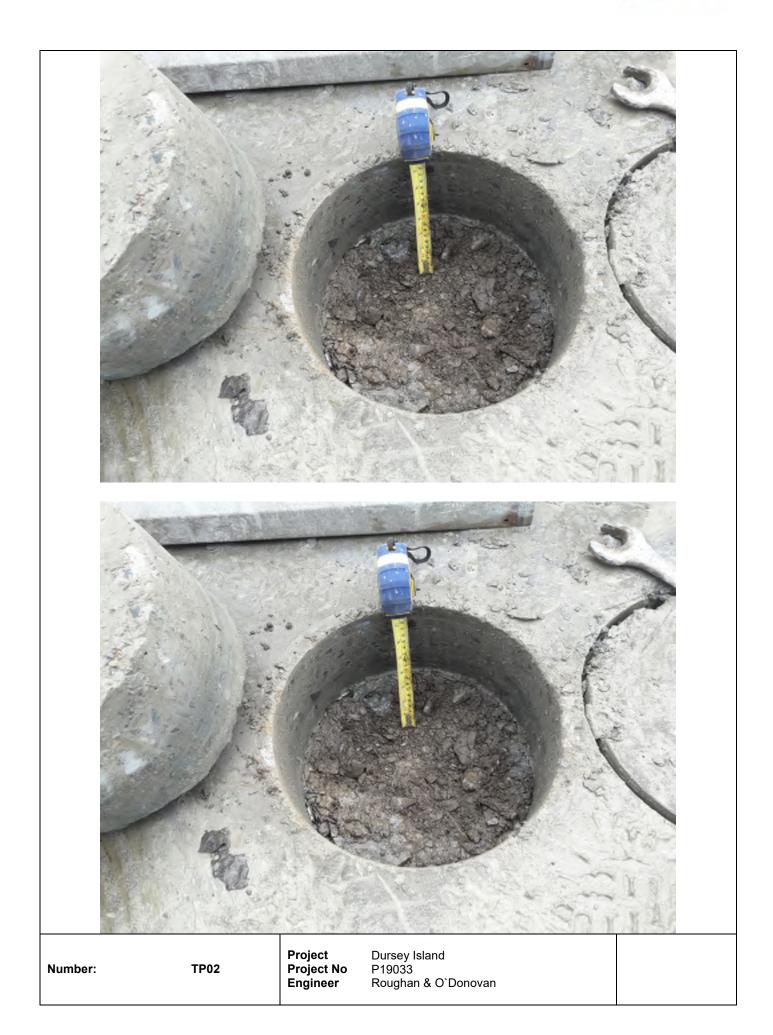
240

300

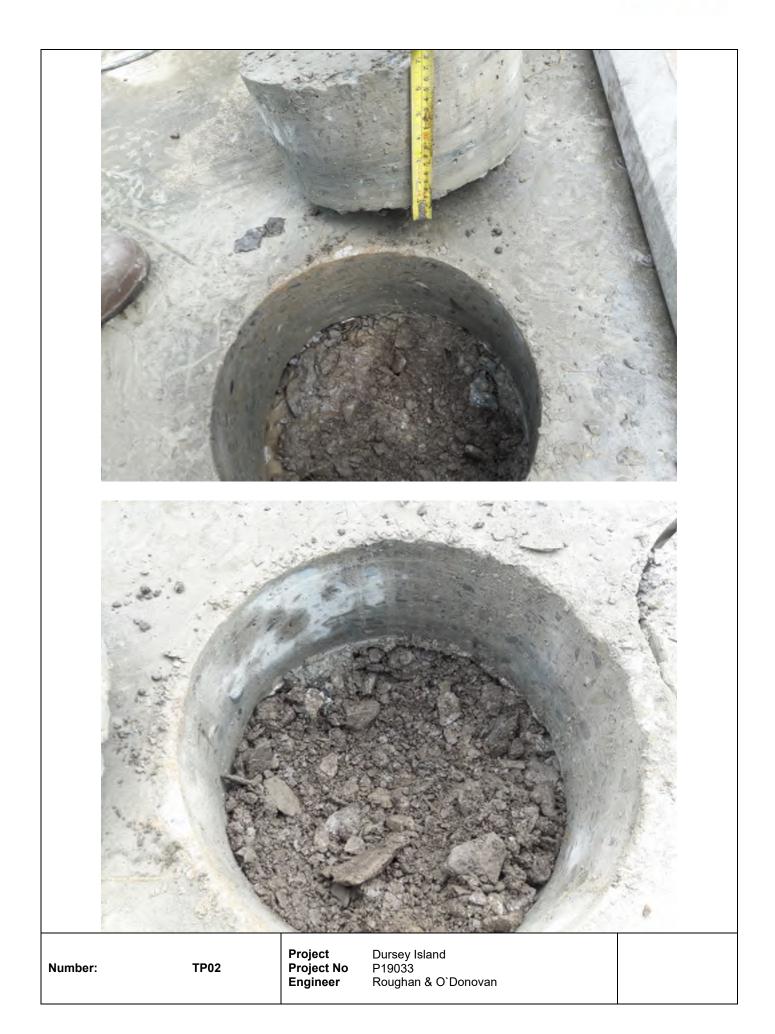
360

410







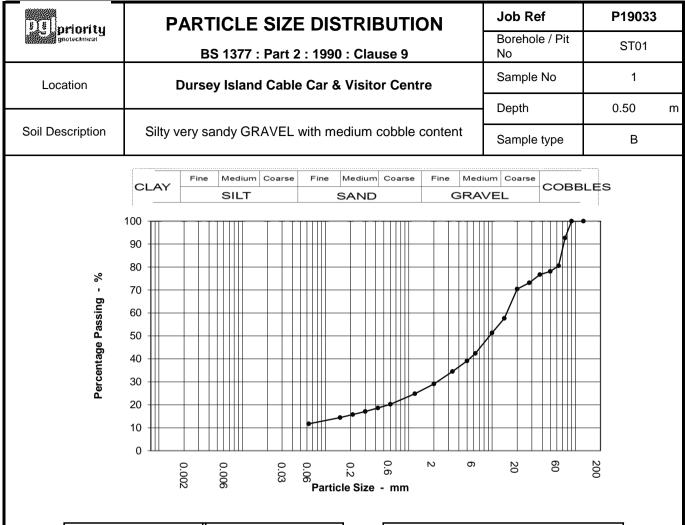

					Priority G	Geotechi	nical Ltd.	Trial Pit	
Pylp	priority eotechnical				Fax:	021 463 021 463	8690	TP02	
							chnical.ie	Sheet 1	
Project Name:	Dursey Isla Centre	ind Cable	Car & Visitor	<b>Proje</b> P190	ect No.		Co-ords:50793E - 41886N Level: 23.30m OD	<b>Date</b> 12/04/2019	
	n: Dursey Isla		`ork				Dimensions (m): 0.35 S		e
							Depth: 0	1:25 Logge	
Client:	Cork Coun	-				1	0.30m BGL	AO	;u
Water Strike & Backfill		oles & In Situ		Depth (m)	Level (m OD)	Legend	Stratum Description		
> थ ख	Depth (m)	Туре	Results			NA STR	CONCRETE.		-
				0.17	23.13	****	(MADE GROUND) Brown, clayey sandy GRAV	ÆL.	-
전화성관	0.25	ES		0.30	23.00		Gravel is fine to coarse, angular, Siltstone lithol End of Pit at 0.300m	logy.	-
									-
									-
									-
									1 -
									-
									-
									-
									2 —
									-
									-
									-
									-
									3 -
									-
									-
									-
									-
									-
									4 -
									-
									-
					<u> </u>				5 -
Plant:	Moderate. 8T track machin	ne.			ľ	Groundw	ater: None encountered.		
	Concrete. Trial pit termin	ated at 0.30	)m bgl due to bedroo	ck.	L				









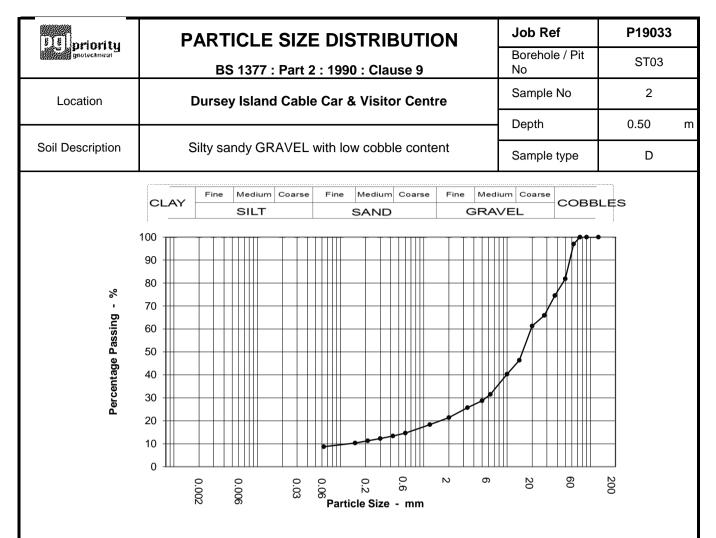

### **KEY TO SYMBOLS - LABORATORY TEST RESULT**

U P	Undisturbed Sample Piston Sample	
TWS	Thin Wall Sample	
В	Bulk Sample - Disturbed	
D	Jar Sample - Disturbed	
W	Water Sample	
pH	Acidity/Alkalinity Index	
SO3	% - Total Sulphate Content (acid soluble)	
$SO_3$	g/ltr - Water Soluble Sulphate (Water or 2:1 Aqueous Soil Extract)	
+	Calcareous Reaction	
CI	Chloride Content	
PI	Plasticity Index	
<425	% of material in sample passing 425 micron sieve	
LL PL	Liquid Limit Plastic Limit	
MC	Water Content	
NP	Non Plastic	
Yb	Bulk Density	
Yd	Dry Density	
Ps	Particle Density	
U/D	Undrained/Drained Triaxial	
U/C	Unconsolidated/Consolidated Triaxial	
T/M	Single Stage/Multistage Triaxial	
100/38	Sample Diameter (mm)	
REM	Remoulded Triaxial Test Specimen	
TST	Triaxial Suction Test	
V	Vane Test	
DSB	Drained Shear Box	
RSB	Residual Shear Box	
RS	Ring Shear	
$\sigma_3$	Cell Pressure	
$\sigma_1 - \sigma_3$	Deviator Stress	
С	Cohesion	
C_	Effective Cohesion Intercept	
φ	Angle of Shearing Resistance - Degrees	
φ_	Effective Angle of Shearing Resistance	
εf *	Strain at Failure	
*	Failed under 1 st Load	
	Failed under 2 nd Load	
#	Untestable	
##	Excessive Strain Effective Overburden Pressure	
p_o m _v	Coefficient of Volume Decrease	
C _v	Coefficient of Consolidation	
Opt	Optimum	
Nat	Natural	
Std	Standard Compaction - 2.5kg Rammer (¶ CBR)	
Hvy	Heavy Compaction - 4.5kg Rammer (§ CBR)	
Vib	Vibratory Compaction	
CBR	California Bearing Ratio	
Sat m.c.	Saturation Moisture Content	
MCV	Moisture Condition Value	
	nal	
ey sheet	geotechnical	

Key sheet

1.5. priority gestechaical	Natural Moisture Content/Atterberg Limits Summary BS 1377 : Part 2 : 1990 : Clause 3	Job Ref
Location	Dursey Island Cable Car & Visitor Centre	P19033

Hole ID	Sample Ref	Depth (m)	Sample Type	Sample Description	MC	LL	PL	PI	% Pass 425
ST01	1	0.5	В	Silty very sandy GRAVEL with medium cobble content	14	37	29	8	36.2
ST01	2	1	D	Silty very sandy GRAVEL	12				
ST03	2	0.5	D	Silty sandy GRAVEL with low cobble content	16	48	32	16	38.9
ST04	2	0.5	D	Slightly gravelly sandy SILT	22	52	34	18	56.5
TP01	1	0.5	В	Silty very sandy GRAVEL	12	47	32	15	33

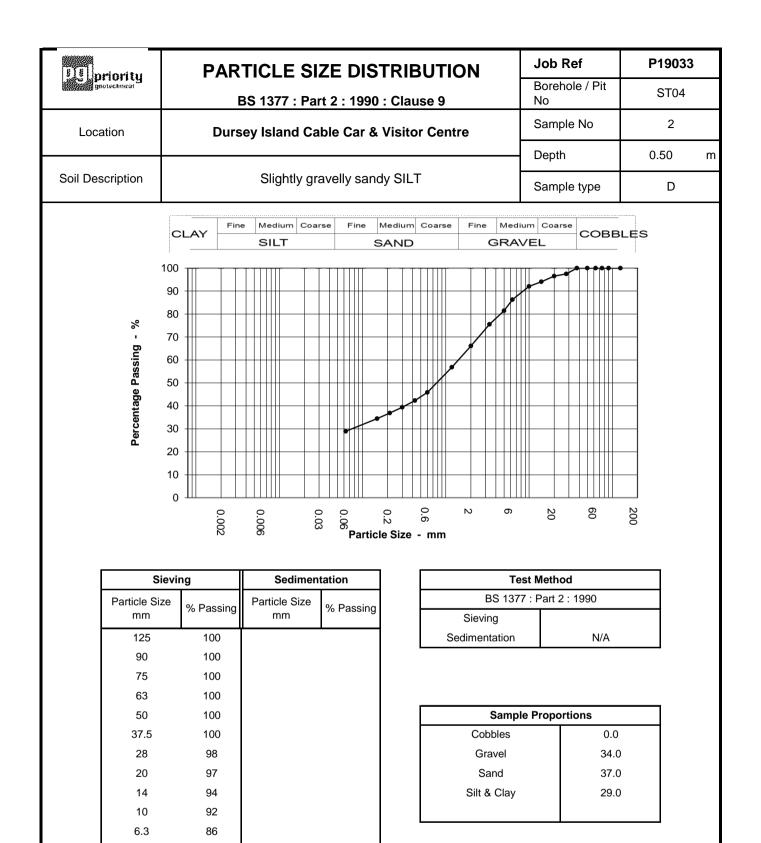



Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	93		
63	81		
50	78		
37.5	77		
28	73		
20	70		
14	58		
10	51		
6.3	42		
5	39		
3.35	34		
2	29		
1.18	25		
0.6	20		
0.425	19		
0.3	17		
0.212	16		
0.15	14		
0.063	12		

Test Method			
BS 1377 : Part 2 : 1990			
Sieving	Clause 9.3		
Sedimentation	N/A		

Sample Proportions			
Cobbles	19.0		
Gravel	51.0		
Sand	17.0		
Silt & Clay	12.0		

Grading Analysis				
D100	90.00			
D60	14.90			
D10				
Uniformity Coefficient				




Sievi	ng	Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	97		
50	82		
37.5	75		
28	66		
20	61		
14	46		
10	40		
6.3	32		
5	29		
3.35	26		
2	21		
1.18	18		
0.6	15		
0.425	13		
0.3	12		
0.212	11		
0.15	10		
0.063	9		

Test Method			
BS 1377 : Part 2 : 1990			
Sieving	Clause 9.3		
Sedimentation	N/A		

Sample Proportions				
Cobbles	3.0			
Gravel	76.0			
Sand	13.0			
Silt & Clay	9.0			

Grading Analysis				
D100	75.00			
D60	19.40			
D10	0.13			
Uniformity Coefficient	150.00			



5

3.35

2

1.18

0.6

0.425

0.3

0.212

0.15

0.063

81

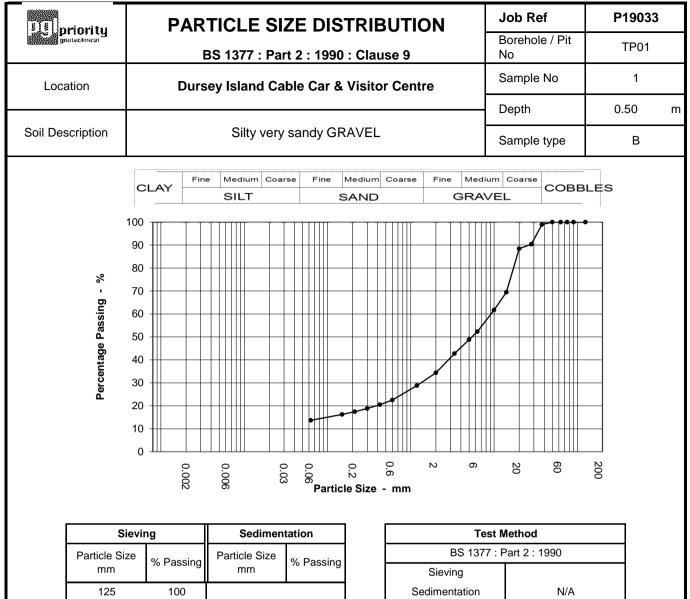
76

66

57

46

42


39

37

34

29

Grading Analysis				
D100	37.50			
D60	1.41			
D10				
Uniformity Coefficient				



Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	99		
28	90		
20	88		
14	69		
10	62		
6.3	52		
5	49		
3.35	43		
2	34		
1.18	29		
0.6	23		
0.425	21		
0.3	19		
0.212	17		
0.15	16		
0.063	14		

Sample Proportions				
Cobbles	0.0			
Gravel	66.0			
Sand	21.0			
Silt & Clay	14.0			

Grading Analysis					
D100	50.00				
D60	9.19				
D10					
Uniformity Coefficient					



Chemistry to deliver results Chemtest Ltd. Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Papart No.	19-15525-1		
Report No.:	19-10020-1		
Initial Date of Issue:	14-May-2019		
Client	Priority Geotechnical Ltd		
Client Address:	Unit 12 Owenacurra Business Park Midleton County Cork Ireland		
Contact(s):	Colette Kelly		
Project	P19033 Dursey		
Quotation No.:		Date Received:	08-May-2019
Order No.:	11696	Date Instructed:	08-May-2019
No. of Samples:	2		
Turnaround (Wkdays):	7	Results Due:	16-May-2019
Date Approved:	14-May-2019		
Approved By:			
Ah.			
Details:	Robert Monk, Technical Manager		



Client: Priority Geotechnical Ltd		Chemtest Job No.:			19-15525	19-15525
Quotation No.:	(	Chemte	st Sam	ple ID.:	822348	822349
		Sa	ample Lo	ocation:	TP01	TP01
			Sampl	e Type:	SOIL	SOIL
			Top Dep	oth (m):	0.50	0.50
		Date Sampled:			02-May-2019	02-May-2019
Determinand	Accred.	SOP	Units	LOD		
Moisture	Ν	2030	%	0.020	11	10
pH	U	2010		N/A		7.9
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010		< 0.010
Sulphate (Acid Soluble)	U	2430	%	0.010		0.021
Organic Matter	U	2625	%	0.40	0.91	



Chemistry to deliver results Chemtest Ltd. Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	19-16234-1		
Initial Date of Issue:	21-May-2019		
Client	Priority Geotechnical Ltd		
Client Address:	Unit 12 Owenacurra Business Park Midleton County Cork Ireland		
Contact(s):	Colette Kelly		
Project	P19033 Dursey Island		
Quotation No.:		Date Received:	14-May-2019
Order No.:	11696	Date Instructed:	14-May-2019
No. of Samples:	4		
Turnaround (Wkdays):	7	Results Due:	22-May-2019
Date Approved:	21-May-2019		
Approved By:			
M			
Details:	Martin Dyer, Laboratory Manager		



## Results - Soil

Client: Priority Geotechnical Ltd		Chemtest Job No.:		19-16234	19-16234	19-16234	19-16234	
Quotation No.:	(	Chemtest Sample ID.:		825698	825699	825700	825701	
		Sa	ample Lo	ocation:	RC01	RC02	RC03	RC04
		Sample Type:		SOIL	SOIL	SOIL	SOIL	
			Top De	pth (m):	1.10	2.95	1.80	0.40
			Date Sa	ampled:	10-May-2019	10-May-2019	10-May-2019	10-May-2019
Determinand	Accred.	SOP	Units	LOD				
Moisture	N	2030	%	0.020	0.096	0.22	0.35	0.057
Stones and Removed Materials	N	2030	%	0.020	< 0.020	< 0.020	< 0.020	< 0.020
рН	U	2010		N/A	9.2	9.4	9.2	9.5
Magnesium (Water Soluble)	N	2120	g/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010
Total Sulphur	U	2175	%	0.010	< 0.010	< 0.010	< 0.010	< 0.010
Sulphate (Acid Soluble)	U	2430	%	0.010	< 0.010	< 0.010	< 0.010	< 0.010



## **Test Methods**

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.



### **Report Information**

### Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

### Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

### Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to:

customerservices@chemtest.com



## **Test Methods**

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.



### **Report Information**

### Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

### Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

### Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to:

customerservices@chemtest.com



emtest ight chemistry to deliver results Chemtest Ltd. Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	19-13471-1		
Initial Date of Issue:	02-May-2019		
Client	Priority Geotechnical Ltd		
Client Address:	Unit 12 Owenacurra Business Park Midleton County Cork Ireland		
Contact(s):	Colette Kelly		
Project	P19033 Dursey Island		
Quotation No.:	Q17-09116	Date Received:	18-Apr-2019
Order No.:	11696	Date Instructed:	24-Apr-2019
No. of Samples:	1		
Turnaround (Wkdays):	7	Results Due:	02-May-2019
Date Approved:	02-May-2019		
Approved By:			
Details:	Robert Monk, Technical Manager		

etalis:

Robert Monk, Technical Manager

# Chemtest The right chemistry to deliver results Project: P19033 Dursey Island

Client: Priority Geotechnical Ltd

		<u>Results - Soil</u>
Chemtest Job No.:	19-13471	]
hemtest Sample ID.:	813542	
Sample Location:	TP02	
Comple Type	0.011	

Client: Priority Geotechnical Ltd		19-13471				
Quotation No.: Q17-09116	(	813542				
		Sa	ample Lo	ocation:	TP02	
			Sampl	e Type:	SOIL	
			Top Dep	oth (m):	0.25	
			Date Sa	ampled:	12-Apr-2019	
			Asbest	os Lab:		
Determinand	Accred.	SOP	Units	LOD		
АСМ Туре	U	2192		N/A	-	
Asbestos Identification	U	2192	%	0.001	No Asbestos Detected	
ACM Detection Stage	U	2192		N/A	-	
Moisture	N	2030	%	0.020	8.5	
Arsenic	U	2450	mg/kg	1.0	1.4	
Barium	U		mg/kg	10	13	
Cadmium	Ŭ		mg/kg		< 0.10	
Chromium	Ŭ	2450		1.0	22	
Molybdenum	U	2450		2.0	< 2.0	
Copper	U	2450			6.4	
Mercury	U	2450	mg/kg		0.47	
Nickel	U		mg/kg		31	
Lead	U		mg/kg		4.9	
Selenium	U	2450			0.36	
Zinc	U	2450	mg/kg	0.50	43	
Chromium (Trivalent)	N		mg/kg		22	
Chromium (Hexavalent)	N	2490			< 0.50	
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	
Aliphatic TPH >C6-C8	N		mg/kg	1.0	< 1.0	
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	
Aliphatic TPH >C12-C16	U	2680			< 1.0	
Aliphatic TPH >C16-C21	U	2680		1.0	< 1.0	
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	
Aliphatic TPH >C35-C44	N	2680		1.0	< 1.0	
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	
Aromatic TPH >C7-C8	N	2680		1.0	< 1.0	
Aromatic TPH >C8-C10	U	2680		1.0	< 1.0	
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	
Aromatic TPH >C12-C16	U	2680		1.0	< 1.0	
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	
Benzene	U	2760		1.0	< 1.0	
201120110			1.33	1.0	4 1.0	

# Chemtest Project: P19033 Dursey Island Client: Priority Geotechnical Ltd

<u>Results - Soil</u>	

Client: Priority Geotechnical Ltd		Chemtest Job No.:					
Quotation No.: Q17-09116	(	Chemte	st Sam	ple ID.:	813542		
		Sa	ample Lo		TP02		
			Sampl	e Type:	SOIL		
		Top Depth (m):					
			Date Sa	ampled:	12-Apr-2019		
			Asbest	os Lab:	COVENTRY		
Determinand	Accred.	SOP	Units	LOD			
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0		
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0		
o-Xylene	U	2760	µg/kg	1.0	< 1.0		
Methyl Tert-Butyl Ether	U	2760	µg/kg	1.0	< 1.0		
Naphthalene	U	2800	mg/kg	0.10	< 0.10		
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10		
Acenaphthene	U	2800	mg/kg	0.10	< 0.10		
Fluorene	U	2800	mg/kg	0.10	< 0.10		
Phenanthrene	U	2800	mg/kg	0.10	< 0.10		
Anthracene	U	2800	mg/kg	0.10	< 0.10		
Fluoranthene	U	2800	mg/kg	0.10	< 0.10		
Pyrene	U	2800	mg/kg	0.10	< 0.10		
Benzo[a]anthracene	U	2800	mg/kg	0.10	< 0.10		
Chrysene	U	2800	mg/kg	0.10	< 0.10		
Benzo[b]fluoranthene	U	2800	mg/kg	0.10	< 0.10		
Benzo[k]fluoranthene	U	2800	mg/kg	0.10	< 0.10		
Benzo[a]pyrene	U	2800	mg/kg	0.10	< 0.10		
Indeno(1,2,3-c,d)Pyrene	U	2800	mg/kg	0.10	< 0.10		
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10		
Benzo[g,h,i]perylene	U	2800	mg/kg	0.10	< 0.10		
Coronene	N	2800	mg/kg	0.10	< 0.10		
Total Of 17 PAH's	N	2800	mg/kg	2.0	< 2.0		
PCB 28	U	2815	mg/kg	0.010	< 0.010		
PCB 52	U	2815	mg/kg	0.010	< 0.010		
PCB 90+101	U	2815	mg/kg	0.010	< 0.010		
PCB 118	U	2815	mg/kg	0.010	< 0.010		
PCB 153	U	2815	mg/kg	0.010	< 0.010		
PCB 138	U	2815	mg/kg	0.010	< 0.010		
PCB 180	U	2815	mg/kg	0.010	< 0.010		
Total PCBs (7 Congeners)	N	2815	mg/kg	0.10	< 0.10		



Chemtest Job No:	19-13471				Landfill	IndfIII Waste Acceptance Criteria		
Chemtest Sample ID: Sample Ref:	813542					Limits Stable, Non-		
Sample ID:						reactive		
Sample Location:	TP02					hazardous	Hazardous	
Top Depth(m):	0.25				Inert Waste	waste in non-	Waste	
Bottom Depth(m):					Landfill	hazardous	Landfill	
Sampling Date:	12-Apr-2019					Landfill		
Determinand	SOP	Accred.	Units					
Total Organic Carbon	2625	U	%	< 0.20	3	5	6	
Loss On Ignition	2610	U	%	1.3			10	
Total BTEX	2760	U	mg/kg	< 0.010	6			
Total PCBs (7 Congeners)	2815	U	mg/kg	< 0.10	1			
TPH Total WAC (Mineral Oil)	2670	U	mg/kg	< 10	500			
Total (Of 17) PAH's	2800	Ν	mg/kg	< 2.0	100			
pH	2010	U		9.3		>6		
Acid Neutralisation Capacity	2015	Ν	mol/kg	0.022		To evaluate	To evaluate	
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test	
			mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg	
Arsenic	1450	U	0.0012	< 0.050	0.5	2	25	
Barium	1450	U	0.0024	< 0.50	20	100	300	
Cadmium	1450	U	< 0.00010	< 0.010	0.04	1	5	
Chromium	1450	U	< 0.0010	< 0.050	0.5	10	70	
Copper	1450	U	< 0.0010	< 0.050	2	50	100	
Mercury	1450	U	< 0.00050	< 0.0050	0.01	0.2	2	
Molybdenum	1450	U	< 0.0010	< 0.050	0.5	10	30	
Nickel	1450	U	< 0.0010	< 0.050	0.4	10	40	
Lead	1450	U	< 0.0010	< 0.010	0.5	10	50	
Antimony	1450	U	< 0.0010	< 0.010	0.06	0.7	5	
Selenium	1450	U	< 0.0010	< 0.010	0.1	0.5	7	
Zinc	1450	U	0.0018	< 0.50	4	50	200	
Chloride	1220	U	3.7	37	800	15000	25000	
Fluoride	1220	U	0.16	1.6	10	150	500	
Sulphate	1220	U	4.6	46	1000	20000	50000	
Total Dissolved Solids	1020	Ν	49	490	4000	60000	100000	
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-	
Dissolved Organic Carbon	1610	U	10	100	500	800	1000	

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	8.5

### Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.



## **Test Methods**

SOP	Title	Parameters included	Method summary
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS



## **Test Methods**

SOP	Title	Parameters included	Method summary
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
640	Characterisation of Waste (Leaching)	<b>3</b>	ComplianceTest for Leaching of Granular Waste Material and Sludge



### **Report Information**

### Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

### Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

### Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to:

customerservices@chemtest.com



Chemistry to deliver results Chemtest Ltd. Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	19-13422-1		
Initial Date of Issue:	30-Apr-2019		
Client	Priority Geotechnical Ltd		
Client Address:	Unit 12 Owenacurra Business Park Midleton County Cork Ireland		
Contact(s):	Colette Kelly		
Project	P19033 Dursey Island		
Quotation No.:		Date Received:	18-Apr-2019
Order No.:	11696	Date Instructed:	18-Apr-2019
No. of Samples:	7		
Turnaround (Wkdays):	7	Results Due:	30-Apr-2019
Date Approved:	30-Apr-2019	Subcon Results Due:	14-May-2019
Approved By:			
M.J.			
Details:	Martin Dyer, Laboratory Manager		

# Chemtest The right chemistry to deliver results Project: P19033 Dursey Island

## Results - Water

Client: Priority Geotechnical Ltd			Chemtest Jo	ob No.:	19-13422	19-13422	19-13422	19-13422	19-13422	19-13422	19-13422
Quotation No.:		Chemtest Sample ID.:		813437	813438	813439	813440	813441	813442	813443	
	Sample Location:		Island Well	Station Well	TW01ES01	TW01ES02	TW02ES01	TW02ES02	TW02ES03		
			Sampl	e Type:	WATER						
			Date Sa	ampled:	16-Apr-2019						
Determinand	Accred.	SOP	Units	LOD							
E. coli (Subcon)	S		cfu/100ml	N/A	0	0		5			0
Total Coliforms (Subcon)	S		cfu/100ml	N/A	3	0		5			0
рН	U	1010		N/A	8.0	8.3	7.7	7.5	7.6	7.9	7.7
Electrical Conductivity	U	1020	µS/cm	1.0	410	980	680	690	570	530	540
Ammonia (Free) as N	U	1220	mg/l	0.050	0.21	0.28		0.074			0.11
Nitrite as N	U	1220	mg/l	0.010	0.012	0.011		0.011			0.010
Nitrate as N	U	1220	mg/l	0.50	< 0.50	< 0.50		< 0.50			< 0.50
Phosphorus (Total)	N	1220	mg/l	0.020	< 0.020	< 0.020		< 0.020			< 0.020
Phosphorus (Dissolved)	U	1220	mg/l	0.020	< 0.020	< 0.020		< 0.020			< 0.020
Nitrogen (Total Dissolved)	N	1340	mg/l	1.0	2.4	< 1.0		2.1			< 1.0
Total Hardness as CaCO3	U	1270	mg/l	15	71	270		81			120
Copper (Dissolved)	U	1450	µg/l	1.0	< 1.0	< 1.0		< 1.0			2.4
Iron (Dissolved)	N	1450	µg/l	20	< 20	77		140			510
Manganese (Dissolved)	U	1450	µg/l	1.0	9.4	230		120			2100
Zinc (Dissolved)	U	1450	µg/l	1.0	4.7	< 1.0		85			8.2
Total Organic Carbon	U	1610	mg/l	2.0	5.0	3.7		4.1			5.7
TPH >C6-C10	N	1670	µg/l	0.10	< 0.10	< 0.10		< 0.10			< 0.10
TPH >C10-C21	N	1670	µg/l	0.10	< 0.10	< 0.10		< 0.10			< 0.10
TPH >C21-C40	N	1670	µg/l	0.10	< 0.10	< 0.10		< 0.10			< 0.10
Total TPH >C6-C40	U	1670	µg/l	10	< 10	< 10		< 10			< 10



## **Test Methods**

SOP	Title	Parameters included	Method summary		
1010	pH Value of Waters	рН	pH Meter		
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter		
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.		
1270	Total Hardness of Waters	Total hardness	Calculation applied to calcium and magnesiu results, expressed as mg I-1 CaCO3 equivalent.		
1340	Total Nitrogen in Waters	Total Nitrogen and organic Nitrogen	Persulphate digestion followed by colorimetry.		
1415	Cations in Waters by ICP-MS	Sodium; Potassium; Calcium; Magnesium	Direct determination by inductively coupled plasma - mass spectrometry (ICP-MS).		
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma		
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation		
1670	Total Petroleum Hydrocarbons (TPH) in Waters by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO	Pentane extraction / GC FID detection		



### **Report Information**

### Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

### Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

### Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to:

customerservices@chemtest.com





Qty

4

4

4

1

# Contract Number: 44299

Client Ref: P19033 Client PO: 11779

Laboratory Report

Report Date: 06-06-2019

**Client Priority Geotechnical Limited** Unit 12 **Owenacurra Business Park** Midleton Co. Cork.

Contract Title: Dursey Island For the attention of: Colette Kelly

Date Received: 20-05-2019 Date Commenced: 20-05-2019 Date Completed: 06-06-2019

### **Test Description**

Determination of the slake durability index, two cycles. ISRM Suggested Method For Determining Slake Durability - @ Non Accredited Test

Los Angeles Abrasion Value

BS EN 1097-2 - * UKAS

Magnesium sulfate test soundness value.

BS EN 1367-2 - * UKAS

Disposal of samples for job

Notes: Observations and Interpretations are outside the UKAS Accreditation

- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

### Approved Signatories:

Emma Sharp (Office Manager) - Paul Evans (Quality/Technical Manager) - Richard John (Advanced Testing Manager) Sean Penn (Administrative/Accounts Assistant) - Shaun Jones (Laboratory manager) - Wayne Honey (Administrative/Quality Assistant)

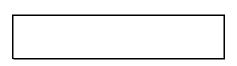
GEO Site & Testing Services Ltd Unit 3-4, Heol Aur, Dafen Ind Estate, Dafen, Llanelli, Carmarthenshire SA14 8QN Tel: 01554 784040 Fax: 01554 784041 info@gstl.co.uk gstl.co.uk

GS	TL	Det	terminat	ion of R		e to Frag Test Met	thod	-	ne Los A	Angeles	
Contract Number		BS EN 1097-2:2010 CI 5 44299									
Site Name			Dursey Island								
Sample Preperation Date Tested			Crushed Down Core Sample 20/05/2019								
Hole De Reference		epth (r		Size Fraction (Max)	Size Fraction (Min)	LA Value					Target Specification
RC01	7.80		17.10	14	10	20					N/A
RC02	4.00		16.10	14	10	21					 N/A
RC03 RC04	7.65 0.80		12.70 5.00	14 14	10 10	20 20					N/A N/A
	1					1					
	1					1					

Key	Reported As			
Size Fraction Max	mm			
Size Fraction Min	mm			

Method of Sampling in accordance with BS932-1 General Requirements and Sample Preparation

Operators	Checked	05/06/2019	Ben Sharp	
JD	Approved	06/06/2019	Paul Evans	$\mathbb{S}^{\mathcal{P}} \mathbb{Q}^{\mathcal{N}}$




### Determination of Slake Durability Index

GSI	ISRM Part 2.2	
Contract Number	44299	
Site Name	Dursey Island	
Nature of Slaking Fluid	Water at 20°C	
Date Tested	24/05/2019	

Hole Reference	D	epth (i	n)	Slake First Cycle	Slake Second Cycle	Appearance Of Material Retained In The Drum	Appearance Of Material Passing Through The Drum
RC01	7.80	-	17.10	98.69	98.41	10 Pieces of Subangular aggregate material with some pieces with ground corners and edges	Sub-angular to <2mm fragments to a sand/silt.
RC02	4.00	-	16.10	98.95	98.43	10 Pieces of Subangular aggregate material with some pieces with ground corners and edges	Sub-angular to <2mm fragments to a sand/silt.
RC03	7.65		12.70	99.37	98.75	11 Pieces of Subangular aggregate material with some pieces with ground corners and edges	Sub-angular to <2mm fragments to a sand/silt.
RC04	0.80		5.00	98.62	97.98	10 Pieces of Subangular aggregate material with some pieces with ground corners and edges	Sub-angular to <2mm fragments to a sand/silt.

Key	Reported As
Slake First Cycle	%
Slake Second Cycle	%



Operators	Checked	05/06/2019	Wayne Honey	W. Honey
JD	Approved	06/06/2019	Ben Sharp	

GSTL	Determination of Thermal Weathering Properties of Aggregates Magnesium Sulfate Test BS EN 1367-2:1998	
Contract Number	44299	
Site Name	Dursey Island	
Sample Preperation	Crushed rock core	
Date Tested	20/05/2019	

Hole Reference	De	epth (r	n)	Size Fraction (Max)	Size Fraction (Min)	Mass of test portions	Magnesium Sulfate Value			Target Specification
RC01	7.80		17.10	14	10	420-430	25			N/A
RC02	4.00		16.10	14	10	420-430	23			N/A
RC03	7.65		12.70	14	10	420-430	19			N/A
RC04	0.80		5.00	14	10	420-430	23			N/A
	+							 		
	1 1									

Key	Reported As
Size Fraction Max	mm
Size Fraction Min	mm
Mass of test portions	g
Magnesium Sulfate Value	%

Method of Sampling in accordance with BS932-1 General Requirements and Sample Preparation

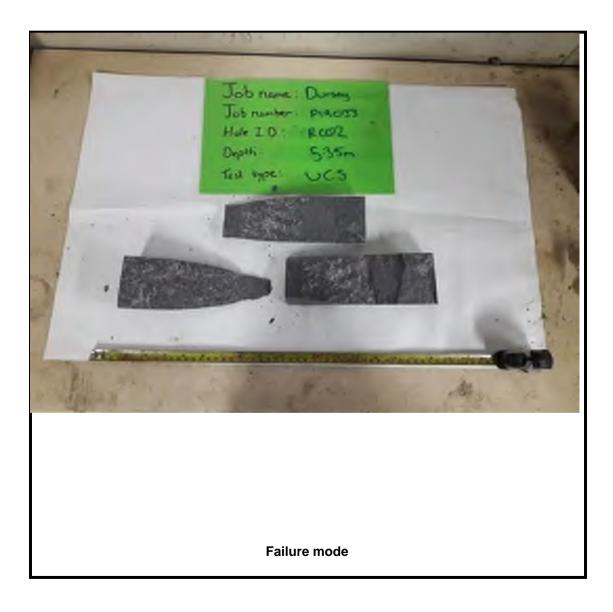
Operators	Checked	05/06/2019	Wayne Honey	W. Honey	
JD	Approved	06/06/2019	Ben Sharp		
	-	-	-	-	2788

				Point Load Strength Index Tests Summary of Results														
Project No.				Proje	ct Nam	e				<u>u</u>	<u>na y</u>	0	1000					
	P19033						r		Dursey	/ Islan	d Cabl	e Car &	& Visito	or Cent	-	1		
Borehole	Si	ample		Specimen Rock Type		Rock Type and	Test Type see ISRM		alid (Y/N)	Dimensions				Force P	Equivalent diameter, De		: Load th Index	Remarks
No.	Depth	Ref.	Туре	Ref.	Depth	Test condition	Type (D, A, I, B)	Direction (L, P or U)	Failure Valid	Lne mm	W	Dps mm	Dps' mm	kN	a Equiva	Is MPa	Is(50 ) ^{MPa}	content if measured)
RC01	m 1.10	RC	с		m	SILTSTONE	D	Р	YES	100.0	76.0	76.0	66.0	6.8	70.8	1.4	1.6	Undulating Smooth
RC01	4.65	RC	с			SILTSTONE	D	L	YES	100.0	76.0	55.0	68.0	3.4	71.9	0.7	0.8	Undulating Smooth
RC01	8.00	RC	с			SILTSTONE	D	L	YES	35.0	76.0	76.0	65.0	3.3	70.3	0.7	0.8	Undulating Smooth
RC02	2.95	RC	С			SILTSTONE	D	Р	YES	140.0	76.0	76.0	35.0	18.6	51.6	7.0	7.1	Planar Smooth
RC02	3.20	RC	С			SILTSTONE	D	Р	YES	110.0	76.0	76.0	64.0	3.2	69.7	0.7	0.8	Undulating Smooth
RC02	4.45	RC	с			SILTSTONE	D	Р	YES	78.0	76.0	76.0	45.0	5.6	58.5	1.6	1.8	Undulating Smooth
RC02	4.90	RC	С			SILTSTONE	D	Р	YES	50.0	76.0	76.0	36.0	4.6	52.3	1.7	1.7	Undulating Rough
RC02	6.40	RC	с			SILTSTONE	D	Р	YES	83.0	76.0	76.0	45.0	2.7	58.5	0.8	0.9	Undulating Rough
RC02	7.15	RC	с			SILTSTONE	D	Р	YES	43.0	76.0	76.0	48.0	3.5	60.4	1.0	1.1	Undulating Smooth
RC02	9.70	RC	с			SILTSTONE	D	Р	YES	0.0	76.0	76.0	6.2	4.3	21.7	9.1	6.2	Undulating Smooth
RC02	11.20	RC	с			SILTSTONE	D	L	YES	25.0	76.0	76.0	59.0	2.8	67.0	0.6	0.7	Undulating Smooth
RC02	11.35	RC	С			SILTSTONE	D	Р	YES	100.0	76.0	76.0	44.0	4.5	57.8	1.4	1.4	Undulating Smooth
RC03	1.40	RC	С			SILTSTONE	D	Р	YES	155.0	76.0	76.0	44.0	0.8	57.8	0.2	0.2	Undulating Rough
RC03	1.80	RC	С			SILTSTONE	D	L	YES	100.0	76.0	76.0	69.0	2.0	72.4	0.4	0.4	Planar Smooth
RC03	2.90	RC	с			SILTSTONE	D	Р	YES	82.0	76.0	76.0	53.0	2.1	63.5	0.5	0.6	Planar Smooth
RC03	5.05	RC	с			SILTSTONE	D	Р	YES	30.0	76.0	76.0	41.0	4.1	55.8	1.3	1.4	Planar Smooth
RC03	6.55	RC	с			SILTSTONE	D	L	YES	140.0	76.0	76.0	69.0	3.2	72.4	0.6	0.7	Undulating Smooth
RC03	10.75	RC	С			SILTSTONE	D	L	YES	140.0	76.0	76.0	68.0	4.8	71.9	0.9	1.1	Planar Smooth
RC04	0.45	RC	С			SILTSTONE	D	Ρ	YES	65.0	76.0	76.0	45.0	20.0	58.5	5.9	6.3	Undulating Smooth
RC04	2.70	RC	С			SILTSTONE	D	Ρ	YES	110.0	76.0	76.0	43.0	4.2	57.2	1.3	1.4	Undulating Smooth
Direction L - parallel to pl P - perpendicul U - unknown or Dimensions Dps - Distance Dps' - at failure Lne - Length fro	D - Diametral, A - Axial, I - Irregular Lump, B - Block Diametral Diametral Axial Block/irregular lump Direction L - parallel to planes of weakness P - perpendicular to planes of weakness U - unknown or random																	
Test performed in accordance with ISRM Suggested Methods : 2007, unless noted otherwise       Date Printed       Approved By       Table         Detailed legend for test and dimensions, based on ISRM, is shown above.       06/04/2019 00:00       1       1         Size factor, F = (De/50)0.45 for all tests.       Cilla       1																		

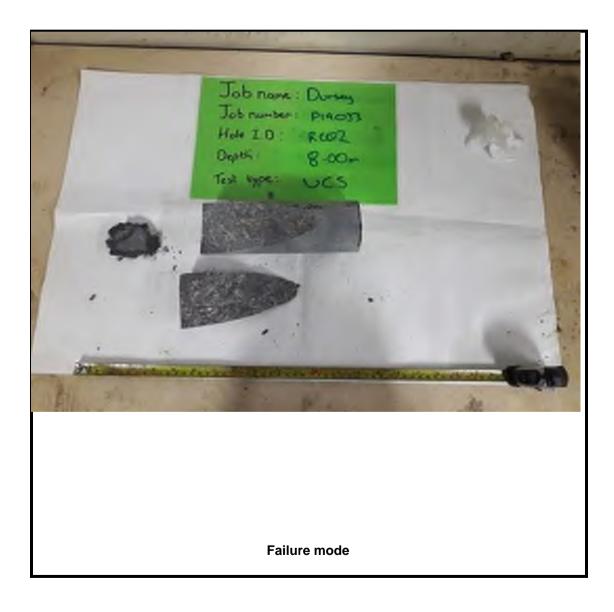
					Point Load Strength Index Tests Summary of Results													
Project No.					ect Nam	e					-							
	P19033				Dursey Island Cable Car & Visitor Centre         Specimen       Rock Type and Test condition       Test Type see ISRM       Dimensions       Force P       Force P       Point Load Strength Index         Ref.       Depth       Test condition       Image: Condition													
Borehole	s	ample		Spe	ecimen	Rock Type and		Type SRM	Failure Valid (Y/N)		Dime	ensions		Force P	lent diamer De	Point Load Strength Inde		Remarks
No.	Depth	Ref.	Туре	Ref.	Depth	Test condition	Type (D, A, I, B)	Direction (L, P or U)	Failure V	Lne	W	Dps					Is(50 )	content if measured)
RC04	m 3.00	RC	с		m	SILTSTONE	D	Р	YES	mm 59.0	mm 76.0	mm 76.0	mm 49.0	kN 1.6	mm 61.0	MPa 0.4	MPa 0.5	Undulating Smooth
RC04	3.80	RC	С			SILTSTONE	D	L	YES	125.0	76.0	76.0	70.0	1.8	72.9	0.3	0.4	
RC04	5.45	RC	с			SILTSTONE	D	Ρ	YES	33.0	76.0	76.0	53.0	2.7	63.5	0.7	0.8	
Direction L - parallel to pl P - perpendicul U - unknown or Dimensions Dps - Distance Dps' - at failure Lne - Length fro	D - Diametral, A - Axial, I - Irregular Lump, B - Block Direction L - parallel to planes of weakness P - perpendicular to planes of weakness U - unknown or random Diametral Axial Block/irregular lump P P P P P P P P P P P P P																	
-						nods : 2007, unless i	noted of	therwis	e			Printed	_	Appro	ved B	y	Table	
-	etailed legend for test and dimensions, based on ISRM, is shown above. ize factor, F = (De/50)0.45 for all tests. Cilla 2																	

Job Name	Dursey Island Cable Car & Visitor Centre
Job Number	P19033
Borehole:	RC01
Depth:	5.55 m
Rock Type	SILTSTONE
Bulk Density	2.81 Mg/m3
Load at Failure, P	198.5 kN
Stress at Failure	44.97 MPa

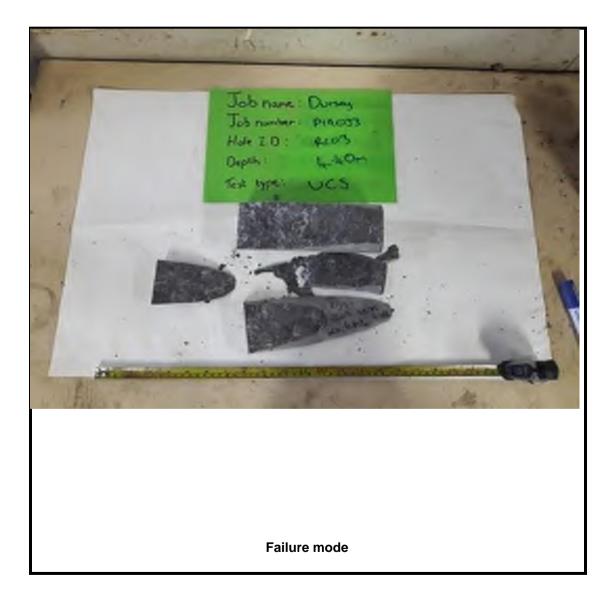



Job Name	Dursey Island Cable Car & Visitor Centre
Job Number	P19033
Borehole:	RC01
Depth:	7.1 m
Rock Type	SILTSTONE
Bulk Density	2.74 Mg/m3
Load at Failure, P	68.2 kN
Stress at Failure	15.07 MPa




Job Name Job Number	Dursey Island Cab P19033	le Car & Visitor Centre
Borehole: Depth:	RC01 12.05	m
Rock Type	SILTSTONE	
Bulk Density Load at Failure, P	2.78 91.6	Mg/m3 kN
Stress at Failure	20.77	МРа

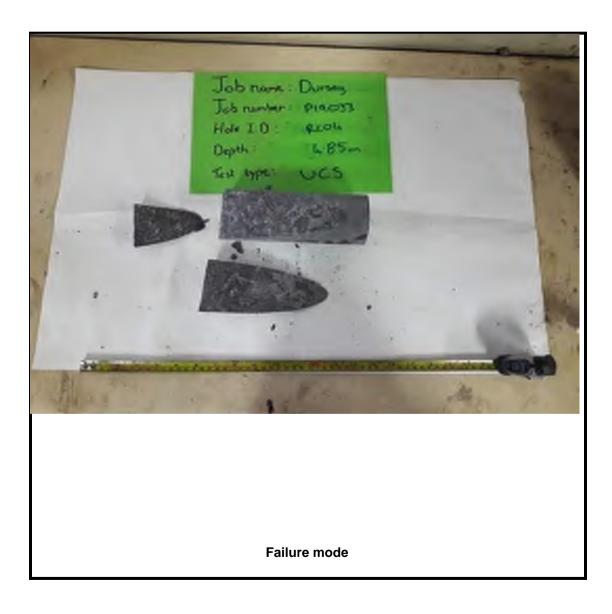



Job Name Job Number	Dursey Island Cab P19033	le Car & Visitor Centre
Borehole: Depth: Rock Type	RC02 5.35 SILTSTONE	m
Bulk Density Load at Failure, P	2.78 51	Mg/m3 kN
Stress at Failure	11.57	МРа



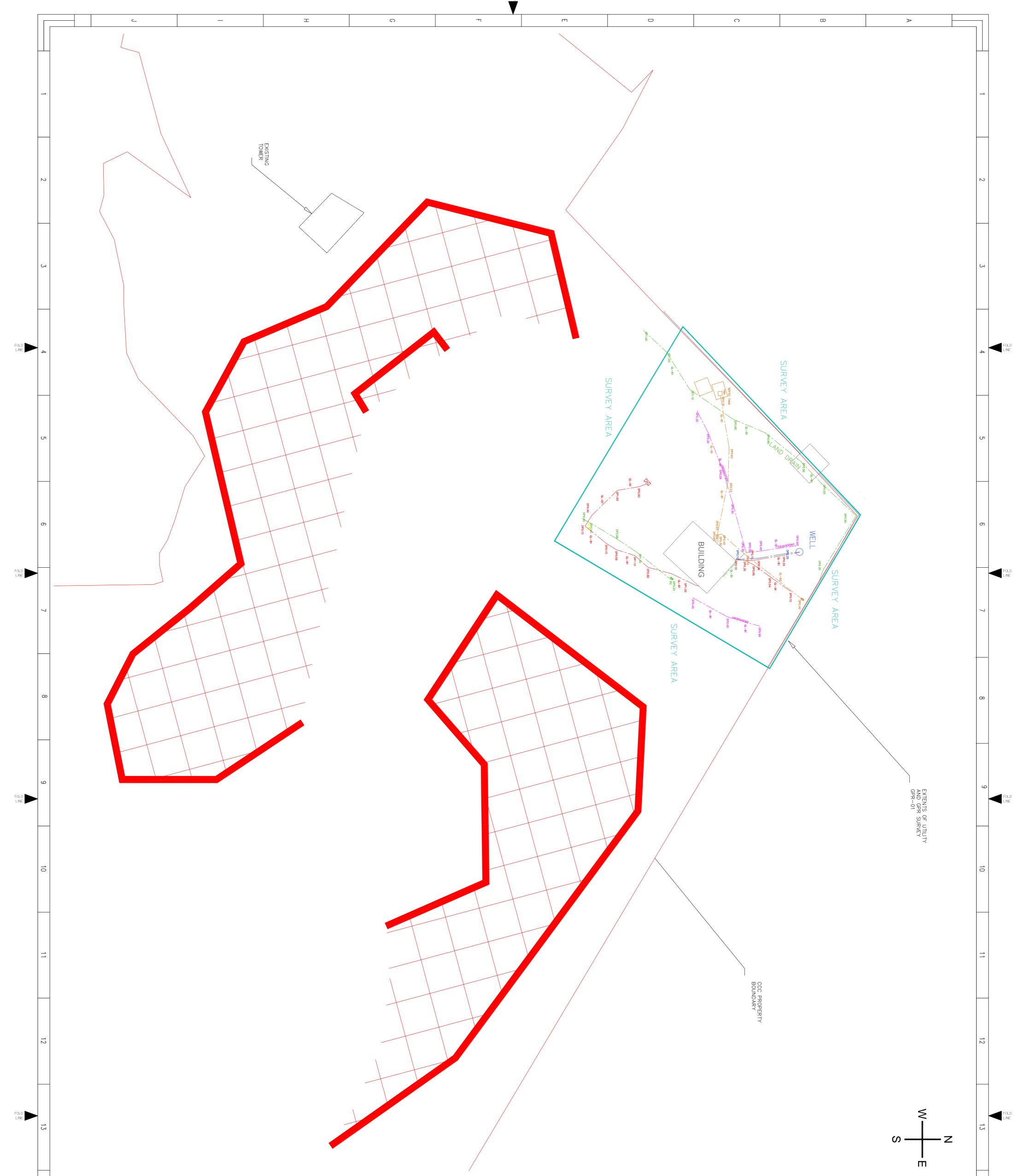
Job Name	Dursey Island Cable Car & Visitor Centre
Job Number	P19033
Borehole:	RC02
Depth:	8 m
Rock Type	SILTSTONE
Bulk Density	2.78 Mg/m3
Load at Failure, P	61.9 kN
Stress at Failure	14.07 MPa




Job Name	Dursey Island Cable Car & Visitor Centre
Job Number	P19033
Borehole:	RC03
Depth:	4.4 m
Rock Type	SILTSTONE
Bulk Density	2.80 Mg/m3
Load at Failure, P	60.7 kN
Stress at Failure	13.77 MPa



Job Name	Dursey Island Cable Car & Visitor Centre
Job Number	P19033
Borehole:	RC03
Depth:	4.8 m
Rock Type	SILTSTONE
Bulk Density	2.81 Mg/m3
Load at Failure, P	42.6 kN
Stress at Failure	9.67 MPa




Job Name Job Number	Dursey Island Cab P19033	le Car & Visitor Centre
Borehole: Depth: Rock Type	RC04 4.85 SILTSTONE	m
Bulk Density Load at Failure, P	2.78 62.7	Mg/m3 kN
Stress at Failure	14.27	МРа



Job Name	Dursey Island Cable Car & Visitor Centre
Job Number	P19033
Borehole:	RC04
Depth:	6.1 m
Rock Type	SILTSTONE
Bulk Density	2.79 Mg/m3
Load at Failure, P	43.4 kN
Stress at Failure	13.77 MPa





	14 15
	Website: www.metroscan.ie
د	Email: john@metroscan.ie ciaran@metroscan.ie
_	Address: Rathjarney
т	Drawing Title:       Date:       1         Date:       21st March 2019       Sheet No.         Scale:       1         1:250 @ A1 (ITM Coordinates)       Revision No.
G	Client Name: Priority Geotechnical Site Address: Dursey Island Cable Car
г	Image: Press Table         Date of the second of the s
m	Instruction         Instruction           1. GPR scanning frequency 250 and 70           Depth of investigation 2.5m, self calib           2. Radio detection equipment:           Vivax Metrotech VproLoc2 / RD7000           3. GPR scanning limited to smooth surfa           Survey area marked on drawing           4. All depths stated are a indication of d           caution required when excavating.           5. All Utilities are classified QL- B1 unle
D	Accuracy Levels In ideal conditions the accuracy levels of the EML is +/-5%, whilst the GPR outputs accuracy levels of 10% up to 2.5m depth. These accuracy levels can vary depending on ground conditions, depths of services, congestion of services (may cause signal to bleed on to other services). Depths noted on drawings should be taken as indicative and hand / vacuum excavation is advised where exact depth are required. Diameter of services will be given where direct access is available through visual inspection, eg manhole. Survey Limitations Non-conductible services pose a difficult task to identify. Direct buried fibre optic cables are difficult to identify with GPR. They can easily be traced when placed in a conduit by the means of a sonde or cobra reel. They can easily be traced when placed in a conduit by the means of a sonde or cobra reel. They can easily be traced in accurate signal from a service, it will be noted on the drawing that the service is "taken from records". If Metroscan cannot be opened on site, they with be marked on the drawing as UTO (unable to open). Excluded from the survey unless otherwise stated : Domesite services. Services above around. Disconnected services where no signal can be obtained.
0	DP1.50m       DEPTH TO TOP OF SERVICE       GAS       GAS       LINE         UTO       UNABLE TO OPEN       SURVEYED AREA         CL       10.00       COVER LEVEL (METRES)       OSA       OUTSIDE SURVEY AREA         IL       10.00       INVERT LEVEL (METRES)       OSA       OUTSIDE SURVEY AREA         Please note that the absence of services on this drawing is not solid proof that these services are not present in the ground.       While every method of underground utility locating has been adhered to in this survey, some services may lie outside the range of the GPR and electro-magnetic locator signal. Poor ground conditions and or services situated underneath other services can also prove impossible to locate. Due to the fact that not all Utility Service Plans were provided to Metroscan by the contractor, Metroscan cannot be held responsible for any services that have not been identified. The contractor should not assume that all services have been identified and must exercise a duty of care when excavating.         Hand / vacuum excavation is advised to determine exact depth and position of service prior to excavation commencing.
ω	LLAR H STRE
>	FMH       FOUL DRAINAGE MANHOLE
	14 15 SERVICES LEGEND

FOLD LINE

FOLD